Deep Text Mining of Instagram Data Without Strong Supervision

WI 2018 Santiago | International Conference on Web intelligence

Kim Hammar, Shatha Jaradat, Nima Dokoohaki, and Mihhail Matskin

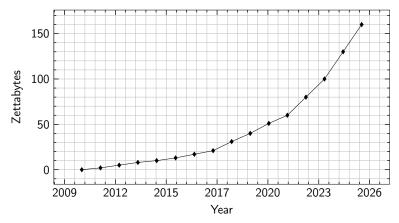
KTH Royal Institute of Technology

kimham@kth.se

December 4, 2018

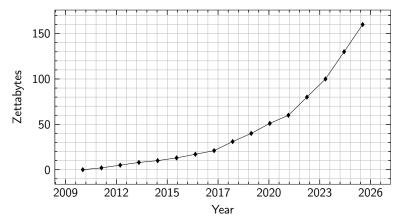
Text Mining in Social Media

Key enabler for Deep Learning: Data growth



э

Key enabler for Deep Learning: Data growth

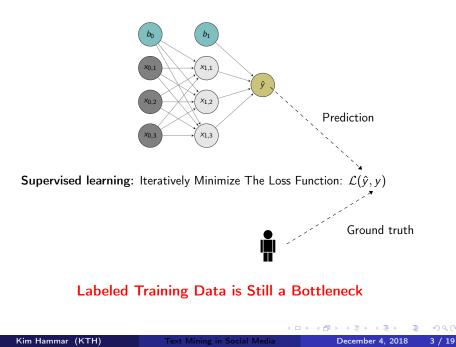


But what about Labeled Data?

Kim Hammar (KTH)

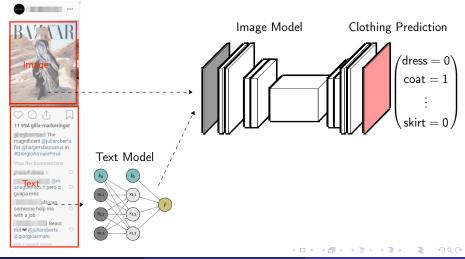
Text Mining in Social Media

э

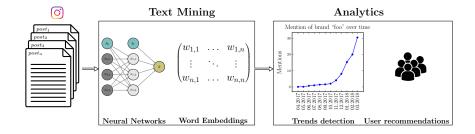


Research Problem: Clothing Prediction on Instagram

Instagram Post



This Paper: <u>Text</u> Classification Without Labeled Data



Kim Hammar (KTH)

Text Mining in Social Media

December 4, 2018 5 / 19

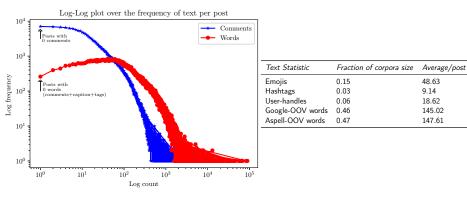
Example Instagram Post

< 17 ▶

Challenge: Noisy Text and No Labels

A case study of a corpora with 143 fashion accounts, 200K posts, 9M comments

Challenge 1: Noisy Text with a Long-Tail Distribution



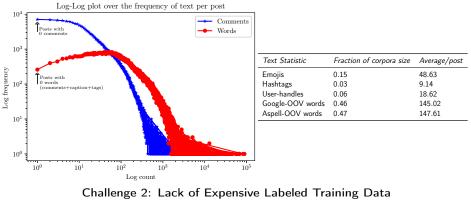
7 / 19

< A

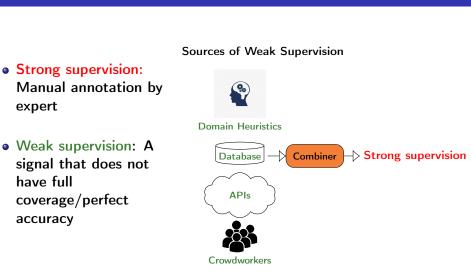
Challenge: Noisy Text and No Labels

A case study of a corpora with 143 fashion accounts, 200K posts, 9M comments

Challenge 1: Noisy Text with a Long-Tail Distribution



Alternative Sources of Supervision That Are Cheap but Weak



Weak Supervision in the Fashion Domain

• Open APIs:

🔁 clarifai

Google Cloud Platform

¹https://github.com/jolibrain/deepdetect

Weak Supervision in the Fashion Domain

• Open APIs:

🔁 clarifai

O Google Cloud Platform

• Pre-trained Clothing Classificiation Models:

$\mathsf{DeepDetect}^1$

¹https://github.com/jolibrain/deepdetect

Weak Supervision in the Fashion Domain

• Open APIs:

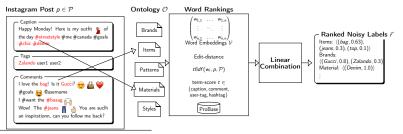
🔁 clarifai

O Google Cloud Platform

• Pre-trained Clothing Classificiation Models:

DeepDetect¹

Text mining system based on a fashion ontology and word embeddings:



¹https://github.com/jolibrain/deepdetect

э

イロト イポト イヨト イヨト

- Simplest way to combine many weak signals: Majority Vote
- Recent research on combination of weak signals: Data Programming²

²Alexander J Ratner et al. "Data Programming: Creating Large Training Sets, Quickly". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 3567–3575. URL: http://papers.nips.cc/paper/6523-data-programming-creating-large-training-setsFquickly.pdf. = > = = - ? Q (

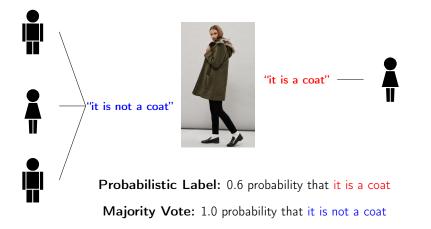
Model Weak Supervision With Generative Model

- Model weak supervision as labeling functions λ_i
 - λ_i (unlabeled data) \rightarrow label
- Learn Generative Model $\pi_{\alpha,\beta}(\Lambda, Y)$ over the labeling process.
 - Based on conflicts between labeling functions assign the functions an estimated accuracy α_i .
 - Based on empirical coverage of labeling functions assign the functions a coverage β_i .
- Given α and β for each labeling function, it can be used to combine labels into a single probabilistic label
 - Give more weight to high-accuracy functions
 - $\bullet~$ If there is a lot of disagreement $\rightarrow~$ low probability label
 - If all labeling functions agree \rightarrow high probability label

Data Programming Intuition

Low accuracy labeling functions

High accuracy labeling functions



Extension of Data Programming to Multi-Label Classification

- Problem: Data programming only defined for binary classification in original paper
- To make it work for multi-class setting: model labeling function as $\lambda_i \rightarrow k_i \in \{0, \dots, N\}$ instead of $\lambda_i \rightarrow k_i \in \{-1, 0, 1\}$.
- Idea 1 for multi-label: model labeling function as $\lambda_i \rightarrow \vec{k_i} = \{v_0, \dots, v_n\} \land v_j \in \{-1, 0, 1\}$
- Idea 2 for multi-label: learn a separate generative model for each class, and let each labeling function give binary output for each class $\lambda_{i,j} \rightarrow k_{i,j} \in \{-1, 0, 1\}$.

Trained Generative Models: Labeling Functions' Accuracy Differ Between Classes

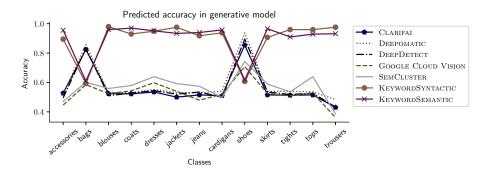


Figure: Multiple generative models can capture a different accuracy for labeling functions for different classes.

• Apply weak supervision to unlabeled data (open APIs, pre-trained models, domain heuristics etc.)

- Apply weak supervision to unlabeled data (open APIs, pre-trained models, domain heuristics etc.)
- Combine labels using majority voting or generative modelling (data programming)

- Apply weak supervision to unlabeled data (open APIs, pre-trained models, domain heuristics etc.)
- Combine labels using majority voting or generative modelling (data programming)
- Use the combined labels for training a discriminative model using supevised machine learning.

Pipeline for Weakly Supervised Classification in Instagram

Problem: A Multi-class Multi-label classification problem with 13 output classes (dresses, coats, blouses, jeans, ...)

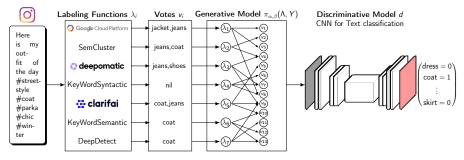


Figure: A pipeline for weakly supervised text classification of Instagram posts.

• Data programming gives $6 F_1$ points improvement over majority vote³, achieving an F_1 score of 0.61 (On level with human performance)

Model	Accuracy	Precision	Recall	Micro-F ₁	Macro-F ₁	Hamming Loss
CNN-DataProgramming	$\textbf{0.797} \pm 0.01$	$\textbf{0.566} \pm 0.05$	$\textbf{0.678} \pm \textbf{0.04}$	$\textbf{0.616} \pm 0.02$	$\textbf{0.535} \pm 0.01$	$\textbf{0.195} \pm 0.02$
CNN-MajorityVote	0.739 ± 0.02	0.470 ± 0.06	$\textbf{0.686} \pm 0.05$	0.555 ± 0.03	0.465 ± 0.05	0.261 ± 0.03
DomainExpert	0.807	0.704	0.529	0.604	0.534	0.184

 Main cause of error: data sparsity (can not extract clothing items from the text if it is never mentioned in the text)

³A smaller, hand-labeled dataset by experts was used for evaluation

- Instagram text is jus as noisy as Twitter, has a long-tail distribution, and is multi-lingual
- In shifting data domains where accurate labeled data is a rarity, like social media, weak supervision is a viable alternative.
- Combining weak labels with generative modeling beats majority voting.
- To extend Data programming to the multi-label scenario, a collection of generative models can be used to incorporate per-class accuracy.

Thank you

- All code and most of the data is open source: https://github.com/shatha2014/FashionRec
- Questions?