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Machine Learning in the Abstract 
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Where does the Data come from? 
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Where does the Data come from? 
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“Data is the hardest part of ML and the most important piece to get 

right. Modelers spend most of their time selecting and transforming 

features at training time and then building the pipelines to deliver 

those features to production models.” [Uber on Michelangelo] 

https://eng.uber.com/scaling-michelangelo/


Data comes from the Feature Store 
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How do we feed the Feature Store? 
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Outline 
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1. Hopsworks 

2. Databricks Delta 

3. Hopsworks Feature Store 

4. Demo  

5. Summary 
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Next-Gen Data Lakes 

Data Lakes are starting to resemble databases: 

– Apache Hudi, Delta, and Apache Iceberg add: 

• ACID transactional layers on top of the data lake 

• Indexes to speed up queries (data skipping) 

• Incremental Ingestion (late data, delete existing records) 

• Time-travel queries 
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Problems: No Incremental Updates, No rollback 

on failure, No Time-Travel, No Isolation. 
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Solution: Incremental ETL with ACID 

Transactions 
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Upsert & Time Travel Example 
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Upsert & Time Travel Example 
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Upsert ==Insert or Update 
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Version Data By Commits  
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Delta Lake by Databricks 

• Delta Lake is a Transactional Layer that sits on 

top of your Data Lake: 

– ACID Transactions with Optimistic Concurrency 

Control 

– Log-Structured Storage 

– Open Format (Parquet-based storage) 

– Time-travel 
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Delta Datasets 
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Optimistic Concurrency Control 
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Optimistic Concurrency Control 
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Mutual Exclusion for Writers 
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Optimistic Retry 
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Scalable Metadata Management 
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Other Frameworks: Apache Hudi, 

Apache Iceberg  
• Hudi was developed by Uber for their Hadoop 

Data Lake (HDFS first, then S3 support) 

• Iceberg was developed by Netflix with S3 as 

target storage layer 

• All three frameworks (Delta, Hudi, Iceberg) 

have common goals of adding ACID updates, 

incremental ingestion, efficient queries. 
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Next-Gen Data Lakes Compared 
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Delta Hudi Iceberg 
Incremental Ingestion Spark Spark Spark 

ACID updates HDFS, S3* HDFS S3, HDFS 

File Formats Parquet Avro, Parquet Parquet, ORC 

Data Skipping  

(File-Level Indexes) 

Min-Max Stats+Z-Order 

Clustering* 

File-Level Max-Min 

stats + Bloom Filter 

File-Level  

Max-Min Filtering 

Concurrency Control Optimistic Optimistic Optimistic 

Data Validation Expectations (coming soon) In Hopsworks N/A 

Merge-on-Read No Yes (coming soon) No 

Schema Evolution Yes Yes Yes 

File I/O Cache Yes* No No 

Cleanup Manual Automatic, Manual No 

Compaction Manual Automatic No 

*Databricks version only (not open-source) 
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How can a Feature Store 

leverage Log-Structured Storage 

(e.g., Delta or Hudi or Iceberg)? 



Hopsworks Feature Store 
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Incremental Feature Engineering with Hudi 
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Point-in-Time Correct Feature Data 
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Feature Time Travel with Hudi                

and Hopsworks Feature Store 

36 



Demo: Hopsworks Featurestore 

+ Databricks Platform 
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Summary 

• Delta, Hudi, Iceberg bring Reliability, Upserts & Time-Travel to 

Data Lakes 

– Functionalities that are well suited for Feature Stores 

 

• Hopsworks Feature Store builds on Hudi/Hive and is the world’s 

first open-source Feature Store (released 2018) 

 

• The Hopsworks Platform also supports End-to-End ML pipelines 

using the Feature Store and Spark/Beam/Flink, Tensorflow/PyTorch, 

and Airflow 
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Thank you! 

470 Ramona St, Palo Alto 

Kista, Stockholm 

https://www.logicalclocks.com 

Register for a free account at  

www.hops.site  

Twitter 

@logicalclocks 

@hopsworks 

 

 
GitHub 

https://github.com/logicalclocks/hopswo

rks 

https://github.com/hopshadoop/hops  

https://www.logicalclocks.com/
http://www.hops.site/
https://github.com/logicalclocks/hopsworks
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops
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