
WIFI SSID:Spark+AISummit | Password: UnifiedDataAnalytics

Kim Hammar, Logical Clocks AB KimHammar1

Jim Dowling, Logical Clocks AB jim_dowling

End-to-End ML Pipelines

with Databricks Delta and

Hopsworks Feature Store

 #UnifiedDataAnalytics #SparkAISummit

Machine Learning in the Abstract

3

Where does the Data come from?

4

Where does the Data come from?

5

“Data is the hardest part of ML and the most important piece to get

right. Modelers spend most of their time selecting and transforming

features at training time and then building the pipelines to deliver

those features to production models.” [Uber on Michelangelo]

https://eng.uber.com/scaling-michelangelo/

Data comes from the Feature Store

6

How do we feed the Feature Store?

7

Outline

8

1. Hopsworks

2. Databricks Delta

3. Hopsworks Feature Store

4. Demo

5. Summary

9

Datasources
Applications

API

Dashboards

Hopsworks

Apache Beam

Apache Spark
Pip

Conda

Tensorflow

scikit-learn

Keras

Jupyter

Notebooks

Tensorboard
Apache Beam

Apache Spark

Apache Flink

Kubernetes

Batch Distributed

ML & DL

Model

Serving

Hopsworks

Feature Store

Kafka +

Spark

Streaming

Model

Monitoring

Orchestration in Airflow

Data Preparation

& Ingestion

Experimentation

& Model Training

Deploy

& Productionalize

Streaming

Filesystem and Metadata storage

HopsFS

10

11

12

13

14

15

Next-Gen Data Lakes

Data Lakes are starting to resemble databases:

– Apache Hudi, Delta, and Apache Iceberg add:

• ACID transactional layers on top of the data lake

• Indexes to speed up queries (data skipping)

• Incremental Ingestion (late data, delete existing records)

• Time-travel queries

16

Problems: No Incremental Updates, No rollback

on failure, No Time-Travel, No Isolation.

17

Solution: Incremental ETL with ACID

Transactions

18

Upsert & Time Travel Example

19

Upsert & Time Travel Example

20

Upsert ==Insert or Update

21

Version Data By Commits

22

Delta Lake by Databricks

• Delta Lake is a Transactional Layer that sits on

top of your Data Lake:

– ACID Transactions with Optimistic Concurrency

Control

– Log-Structured Storage

– Open Format (Parquet-based storage)

– Time-travel

23

Delta Datasets

24

Optimistic Concurrency Control

25

Optimistic Concurrency Control

26

Mutual Exclusion for Writers

27

Optimistic Retry

28

Scalable Metadata Management

29

Other Frameworks: Apache Hudi,

Apache Iceberg
• Hudi was developed by Uber for their Hadoop

Data Lake (HDFS first, then S3 support)

• Iceberg was developed by Netflix with S3 as

target storage layer

• All three frameworks (Delta, Hudi, Iceberg)

have common goals of adding ACID updates,

incremental ingestion, efficient queries.

30

Next-Gen Data Lakes Compared

31

Delta Hudi Iceberg
Incremental Ingestion Spark Spark Spark

ACID updates HDFS, S3* HDFS S3, HDFS

File Formats Parquet Avro, Parquet Parquet, ORC

Data Skipping

(File-Level Indexes)

Min-Max Stats+Z-Order

Clustering*

File-Level Max-Min

stats + Bloom Filter

File-Level

Max-Min Filtering

Concurrency Control Optimistic Optimistic Optimistic

Data Validation Expectations (coming soon) In Hopsworks N/A

Merge-on-Read No Yes (coming soon) No

Schema Evolution Yes Yes Yes

File I/O Cache Yes* No No

Cleanup Manual Automatic, Manual No

Compaction Manual Automatic No

*Databricks version only (not open-source)

32

How can a Feature Store

leverage Log-Structured Storage

(e.g., Delta or Hudi or Iceberg)?

Hopsworks Feature Store

33

Feature Mgmt Storage Access

Statistics

Online
Features

Discovery

Offline
Features

Data Scientist

Online Apps

Data Engineer

MySQL Cluster
(Metadata,

Online Features)

Apache Hive
 Columnar DB

(Offline Features)

Feature Data
Ingestion

Hopsworks Feature Store

Training Data

(S3, HDFS)

Batch Apps

Discover features,
create training data,

save models,
read online/offline/on-

demand features,
historical feature values.

Models

HopsFS

JDBC

(SAS, R, etc)

Feature
CRUD

Add/remove features,
access control,

feature data validation.

Access
Control

Time Travel

Data
Validation

Pandas or

PySpark

DataFrame

External DB

Feature Defn

 select ..

AWS Sagemaker and Databricks Integration

• Computation

engine (Spark)

• Incremental

ACID Ingestion

• Time-Travel

• Data Validation

• On-Demand or

Cached Features

• Online or Offline

Features

Incremental Feature Engineering with Hudi

34

Point-in-Time Correct Feature Data

35

Feature Time Travel with Hudi

and Hopsworks Feature Store

36

Demo: Hopsworks Featurestore

+ Databricks Platform

37

Summary

• Delta, Hudi, Iceberg bring Reliability, Upserts & Time-Travel to

Data Lakes

– Functionalities that are well suited for Feature Stores

• Hopsworks Feature Store builds on Hudi/Hive and is the world’s

first open-source Feature Store (released 2018)

• The Hopsworks Platform also supports End-to-End ML pipelines

using the Feature Store and Spark/Beam/Flink, Tensorflow/PyTorch,

and Airflow

 38

Thank you!

470 Ramona St, Palo Alto

Kista, Stockholm

https://www.logicalclocks.com

Register for a free account at

www.hops.site

Twitter

@logicalclocks

@hopsworks

GitHub

https://github.com/logicalclocks/hopswo

rks

https://github.com/hopshadoop/hops

https://www.logicalclocks.com/
http://www.hops.site/
https://github.com/logicalclocks/hopsworks
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

References
• Feature Store: the missing data layer in ML pipelines?

https://www.logicalclocks.com/feature-store/

• Python-First ML Pipelines with Hopsworks

https://hops.readthedocs.io/en/latest/hopsml/hopsML.html.

• Hopsworks white paper.

https://www.logicalclocks.com/whitepapers/hopsworks

• HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases.

https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi

• Open Source:

https://github.com/logicalclocks/hopsworks

https://github.com/hopshadoop/hops

• Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso,

Gautier Berthou, Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis,

Robin Andersson, Alex Ormenisan, Rasmus Toivonen, Steffen Grohsschmiedt, and Moritz

Meister

40

https://www.logicalclocks.com/feature-store/
https://www.logicalclocks.com/feature-store/
https://www.logicalclocks.com/feature-store/
https://hops.readthedocs.io/en/latest/hopsml/hopsML.html
https://www.logicalclocks.com/introducing-hopsworks/
https://www.usenix.org/conference/fast17/technical-
https://www.usenix.org/conference/fast17/technical-
https://www.usenix.org/conference/fast17/technical-
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

DON’T FORGET TO RATE

AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

