Intrusion Tolerance for Networked Systems Through Two-Level Feedback Control NSE Seminar

Kim Hammar

kimham@kth.se Division of Network and Systems Engineering KTH Royal Institute of Technology

Nov 10, 2023

Use Case: Intrusion Tolerance

- A replicated system offers services to a client population.
- The system must be highly available and provide correct service without disruption.

Use Case: Intrusion Tolerance

An attacker seeks to intrude on the system and disrupt service

- The system should tolerate intrusions
 - it should provide correct service even if a fraction of replicas are compromised

Examples of Systems that Need to Tolerate Intrusions

Embedded systems

SCADA systems

Payment systems

Intrusion Tolerance (Simplified)

Intrusion-Tolerant Systems - State of The Art

- State-of-the-art intrusion-tolerant systems involve 3 building blocks:
 - 1. a protocol for service replication
 - 2. a scaling strategy
 - 3. a recovery strategy
- Given N replicas, the system provides correct service with up to $f = \frac{N-1}{3}$ compromised replicas.
 - Theoretical upper bound
 - f is the tolerance threshold.

Simple control strategies:

- Fixed number of replicas (no scaling)
- No recovery or periodic recovery

Intrusion-Tolerant Systems - State of The Art

- State-of-the-art intrusion-tolerant systems involve 3 building blocks:
 - 1. a protocol for service replication
 - 2. a scaling strategy
 - 3. a recovery strategy

This work: Optimal intrusion recovery and scaling strategies

- Theoretical upper bound
- *f* is the tolerance threshold.
- Simple control strategies:
 - Fixed number of replicas (no scaling)
 - No recovery or periodic recovery

Can we use decision theory and learning-based methods to automatically find effective security strategies?

Intrusion prevention Simulation. Small-scale. (2020) ¹ .	Intrusion res Optimal mu Emulation, s Static attack	ponse I tiple stopping. mall-scale. ker. (2022) ³	Intrusion response Decomposition. Emulation, large Dynamic attacke	se 2-scale 2r. (2023) ⁵
Intrusion prevent Optimal stopping Emulation , smal Static attacker. (ion ;. I-scale (2021) ² .	Intrusion resp Dynkin game. Emulation, sn Dynamic att	onse nall-scale. acker . (2022) ⁴	Intrusion tolerance Two-level control. Integration with BFT Static attacker. (<u>This work</u>)

¹Kim Hammar and Rolf Stadler. "Finding Effective Security Strategies through Reinforcement Learning and Self-Play". In: International Conference on Network and Service Management (CNSM 2020). Izmir, Turkey, 2020.

²Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). Izmir, Turkey, 2021.

³Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

⁴Kim Hammar and Rolf Stadler. "Learning Near-Optimal Intrusion Responses Against Dynamic Attackers". In: IEEE Transactions on Network and Service Management (2023), pp. 1–1. DOI: 10.1109/TNSM.2023.3293413.

⁵Kim Hammar and Rolf Stadler. "Scalable Learning of Intrusion Response through Recursive Decomposition". In: 14th International Conference on Decision and Game Theory for Security. Avignon, France, 2023.

Our Framework for Automated Security

Source code: https://github.com/Limmen/csle

- Documentation: http://limmen.dev/csle/
- Demo:

https://www.youtube.com/watch?v=iE2KPmtIs2A&

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

Fault tolerance and intrusion tolerance

State machine replication

Our Contributions

- ► The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art

Implementation and evaluation

Conclusions

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- ► The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art

Implementation and evaluation

Conclusions

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art Implementation and evaluation

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art

Implementation and evaluation

Conclusions

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art

Implementation and evaluation

Conclusions

Background: Fault Tolerance and Intrusion Tolerance

- Seminal work made by von Neumann and Shannon in 1956.
 - Initially focused on building fault-tolerant circuits.
 - Fault tolerance includes tolerance against: software bugs, malicious attacks, operator mistakes, etc.
- Key strategy for fault tolerance: redundancy

Redundancy is achieved through service replication. Replicas are coordinated through a consensus protocol.

Background: Consensus

Consensus is the problem of reaching agreement on a single value among a set of distributed nodes subject to failures.

Fascinating problem for many reasons:

- Key problem to build practical systems
- The problem comes in many flavors
- Paradoxical cases
- Rich theory

Turing awardees working on consensus:

Dijkstra, 1972

Gray, 1998

Liskov, 2008

Lamport, 2013

Background: Consensus

Definition (Consensus)

We have *N* nodes indexed by $1, \ldots, N$. The nodes are connected by a complete graph and communicate via message passing. Each node starts with an input value $v \in \mathcal{V}$. The goal is to agree on a single value in \mathcal{V} .

An algorithm A solves consensus if the following hold:

- 1. Agreement: No two correct nodes decide on different values
- 2. Termination: All nodes eventually decide.
- 3. Validity: If all nodes start with input v then they decide on v

Consensus Example: The Two Generals Problem (Gray '78)

- Two generals are planning a coordinated attack from different directions.
- One of the simplest consensus problems:
 - Only two nodes: 1 and 2
 - No process failures but link failures may occur

Is the problem solvable?

Consensus Example: The Two Generals Problem (Gray '78)

- Two generals are planning a coordinated attack from different directions.
- One of the simplest consensus problems:
 - Only two nodes: 1 and 2
 - No process failures but link failures may occur

Is the problem solvable? No! Can be proven by contradiction.

When Is Consensus Solvable?

- Solvability depends on synchrony and failure assumptions.
- Three synchronicity models:
 - The asynchronous model: no bounds on either delays or clock drifts.
 - The partially synchronous model: an upper bound exists but the system may have periods of instability where the upper bound does not hold.
 - The synchronous model: there is an upper bound on the communication delay and clock drift between any two nodes.

When Is Consensus Solvable?

Three main failure models:

Crash-stop: nodes fail by crashing.

- Byzantine: failed nodes may behave arbitrarily (e.g., be controlled by an attacker)
- Hybrid: Byzantine failures but each node is equipped with a trusted component that only fails by crashing.

Crash-stop failure

Byzantine failure

Hybrid failure

When Is Consensus Solvable?

Theorem (Summary of 40 years of research)

- Consensus is not solvable in the asynchronous model
- Consensus is solvable with a reliable network in the partially synchronous model with N nodes and up to
 - $f = \frac{N-1}{2}$ Crash-stop failures
 - $f = \frac{N-1}{3}$ Byzantine failures
 - $f = \frac{N-1}{2}$ Hybrid failures (assuming authenticated channels)

Consensus is solvable with a reliable network in the synchronous model with N nodes and up to

- ▶ f = N − 1 Crash-stop failures
- $f = \frac{N-1}{2}$ Byzantine failures (assuming authenticated channels)
- $f = \frac{N-1}{2}$ Hybrid failures (assuming authenticated channels)

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art Implementation and evaluation

Two-Level Feedback Control for Intrusion Tolerance

- Node controllers with strategies π₁,..., π_N compute belief states b₁,..., b_N and make local recovery decisions; the belief states are transmitted to a global system controller with strategy π, which controls the replication factor
- Key insight: the control problems correspond to classical problems studied in operations research, namely the machine replacement problem and the inventory replenishment problem, both of which have been studied for nearly a century.

The TOLERANCE Control Architecture

TOLERANCE: <u>Two-level</u> recovery <u>and</u> scaling <u>control</u> with feedback.

Correctness of TOLERANCE (1/2)

Definition (Correct service)

We say that a system provides correct service if the *healthy* replicas satisfy the following properties:

Each replica executes the same request sequence.(Safety)Each request is eventually executed.(Liveness)Each executed request was sent by a client.(Validity)

Correctness of TOLERANCE (2/2)

Proposition

A system that implements the TOLERANCE architecture provides correct service provided that:

- 1. The controllers can only fail by crashing.
- 2. Network links are authenticated and reliable.
- 3. An attacker can not break cryptographic codes.
- 4. The system is partially synchronous.
- 5. At most k nodes recover simultaneously and at most f nodes are compromised or crashed simultaneously.
- 6. $N_t \ge 2f + 1 + k$ at all times t.

Remark: TOLERANCE does not ensure confidentiality as a compromised node may leak information to the attacker. By appropriate use of cryptography and firewalls, it is possible to extend TOLERANCE to provide confidentiality. Details omitted.

Correctness of TOLERANCE (2/2)

Proposition

A system that implements the TOLERANCE architecture provides correct service provided that:

- 1. The controllers can only fail by crashing.
- 2. Network links are authenticated and reliable.
- 3. An attacker can not break cryptographic codes.
- 4. The system is partially synchronous.
- 5. At most *k* nodes recover simultaneously and at most *f* nodes are compromised or crashed simultaneously.
- 6. $N_t \ge 2f + 1 + k$ at all times *t*.

Remark: TOLERANCE does not ensure confidentiality as a compromised node may leak information to the attacker. By appropriate use of cryptography and firewalls, it is possible to extend TOLERANCE to provide confidentiality. Details omitted.

The Local Level: Intrusion Recovery Control (1/4)

► Nodes
$$\mathcal{N}_t \triangleq \{1, 2, ..., N_t\}$$
 and controllers $\pi_{1,t}, \pi_{2,t}, ..., \pi_{N,t}$.

- Hidden states $S_N = \{\mathbb{H}, \mathbb{C}, \emptyset\}$ (see figure).
- ▶ Actions: (𝒴)ait and (𝔅)ecover
- Observation o_{i,t} ~ Z represents the number of IDS alerts related to node i at time t.

A node controller computes

$$b_{i,t} \triangleq \mathbb{P}[S_{i,t} = \mathbb{C} \mid o_{i,1}, \ldots] \text{ and makes}$$

decisions $a_{i,t} = \pi_{i,t}(b_{i,t}) \in \{\mathfrak{W}, \mathfrak{R}\}.$

The Local Level: Probability of Failure (2/4)

Probability of node compromise $(S_t = \mathbb{C})$ or crash $(S_t = \emptyset)$ in function of time *t*, assuming no recoveries.

The Local Level: Intrusion Recovery Control (3/4)

Goals: minimize the average time-to-recovery $T_i^{(R)}$ and minimize the frequency of recoveries $F_i^{(R)}$:

minimize
$$J_i \triangleq \lim_{T \to \infty} \left[\eta T_{i,T}^{(\mathrm{R})} + F_{i,T}^{(\mathrm{R})} \right]$$
 (1)
$$= \lim_{T \to \infty} \left[\frac{1}{T} \sum_{t=1}^{T} \underbrace{\eta s_{i,t} - a_{i,t} \eta s_{i,t} + a_{i,t}}_{\triangleq c_{\mathrm{N}}(s_{i,t}, a_{i,t})} \right]$$

We define **intrusion recovery** to be the problem of minimizing the above objective subject to a bounded-time-to-recovery (BTR) safety constraint which ensures that the time between two recoveries of a node is bounded to by Δ_R , which can be configured by the system administrator.

The Local Level: Intrusion Recovery Control (4/4)

Problem (Optimal Intrusion Recovery Control)

$\underset{\pi_{i,t}\in \Pi_{\mathrm{N}}}{minimize}$	$\mathbb{E}_{\pi_{i,t}}\left[J_i \mid B_{i,1} = p_{\mathrm{A}} ight]$	$\forall i \in \mathcal{N}$	(2a)
subject to	$a_{i,k\Delta_{\mathrm{R}}}=\mathfrak{R}$	$\forall i, k$	(2b)
	$s_{i,t+1} \sim f_{\mathrm{N}}(\cdot \mid s_{i,t}, a_{i,t})$	$\forall i, t$	(2c)
	$o_{i,t+1} \sim Z(\cdot \mid s_{i,t})$	$\forall i, t$	(2d)
	$a_{i,t+1} \sim \pi_{i,t}(b_{i,t})$	$\forall i, t$	(2e)
	$m{a}_{i,t} \in \mathcal{A}_{\mathrm{N}}, m{s}_{i,t} \in \mathcal{S}_{\mathrm{N}}, m{o}_{it,} \in \mathcal{O}$	$\forall i, t$	(2f)

Numerical Results for the Intrusion Recovery Problem

Illustration of the optimal value function $V_{i,t}^{\star}(b_{i,t})$ for the local control problem. $V_{i,t}^{\star}$ was computed using the incremental pruning algorithm; **black lines indicate the value function**; red lines indicate the alpha-vectors.

Numerical Results for the Intrusion Recovery Problem

Illustration of the optimal value function $V_{i,t}^{\star}(b_{i,t})$ for the local control problem. $V_{i,t}^{\star}$ was computed using the incremental pruning algorithm; **black lines indicate the value function**; red lines indicate the alpha-vectors.

Based on the above results we hypothesize that there exists an optimal recovery strategy of the form:

23/42

Structure of an Optimal Intrusion Recovery Strategy (1/2)

Theorem (Optimal Threshold Recovery Strategies)

If the following holds

$$p_{\rm A}, p_{\rm U}, p_{\rm C_1}, p_{\rm C_2} \in (0, 1)$$
 (A)

$$p_{\mathrm{A}} + p_{\mathrm{U}} \le 1$$
 (B)

$$\frac{p_{C_1}(p_U - 1)}{p_{A_1}(p_U - 1) + p_{C_1}(p_U - 1)} \le p_{C_2}$$
(C)

$$p_{\rm A}(p_{\rm C_1}-1) + p_{\rm C_1}(p_{\rm U}-1) \stackrel{\sim}{=} p_{\rm C_2}$$
 (3)

$$Z(o_{i,t} | s_{i,t}) > 0 \qquad \qquad \forall o_{i,t}, s_{i,t} \qquad (D)$$

$$Z \text{ is TP-2} \qquad \qquad (E)$$

then there exists an optimal recovery strategy $\pi_{i,t}^{\star}$ for each node $i \in \mathcal{N}$ that satisfies

$$\pi_{i,t}^{\star}(b_{i,t}) = \mathfrak{R} \iff b_{i,t} \ge \alpha_t^{\star} \qquad \forall t, \alpha_t^{\star} \in [0,1] \qquad (3)$$

Structure of an Optimal Intrusion Recovery Strategy (2/2)

Corollary (Stationary Optimal Strategy as $\Delta_{
m R} o \infty$)

The recovery thresholds satisfy $\alpha_{t+1}^{\star} \ge \alpha_t^{\star}$ for all $t \in [k\Delta_R, (k+1)\Delta_R]$ and as $\Delta_R \to \infty$, the thresholds converge to a time-independent threshold α^{\star} .

The thresholds were computed using the Incremental Pruning algorithm.

The Global Level: Controlling the Replication Factor (1/6)

The Global Level: Controlling the Replication Factor (2/6)

- At each time t, the system controller receives the belief states b_{1,t},..., b_{N,t} from the node controllers and decides if the replication factor N should be increased.
- State s_t: estimated number of healthy nodes based on b_{1,t},..., b_{N,t}
- ▶ Actions: $a_t \in \{0, 1\} \triangleq A_S$, where $a_t = 1$ means that a new node is added to the system and $a_t = 0$ is a passive action.
- s_{max} is the maximum number of nodes (needed to define the theoretical model). In practice s_{max} may be very large.

The Global Level (3/6): Mean Time to Failure

Mean time to failure (MTTF) in function of the initial number of nodes N_1 ; $T^{(f)}$ is a random variable representing the time when $N_t < f + 1$ with f = 3 and k = 1; the curves relate to different intrusion probabilities p_A .

The Global Level (4/6): Reliability Curve

Reliability curves for varying number of nodes N; The reliability function is defined as $R(t) \triangleq \mathbb{P}[T^{(f)} > t]$ where $T^{(f)}$ is a random variable representing the time when $N_t < f + 1$ with f = 3.

The Global Level (5/6): Controlling the Replication Factor

Goal: maximize the average service availability $T^{(A)}$ and minimize the number of nodes. We model these two goals with the following constrained objective

minimize
$$J \triangleq \lim_{T \to \infty} \left[\frac{1}{T} \sum_{t=1}^{T} s_t \right]$$
 (4)
subject to $T^{(A)} \ge \epsilon_A$
 $\implies \lim_{T \to \infty} \left[\frac{1}{T} \sum_{t=1}^{T} [N_t \ge 2f + 1] \right] \ge \epsilon_A$
 $\implies \lim_{T \to \infty} \left[\frac{1}{T} \sum_{t=1}^{T} [s_t \ge f + 1] \right] \ge \epsilon_A$

where ϵ_A is the minimum allowed average service availability with respect to the tolerance threshold f.

The Global Level (6/6): Controlling the Replication Factor

Problem (Optimal Control of the Replication Factor) $\min_{\pi\in\Pi_{\mathrm{S}}}$ $\mathbb{E}_{\pi}\left[J \mid S_1 = N\right]$ (5a) subject to $\mathbb{E}_{\pi}\left[\mathcal{T}^{(A)}\right] \geq \epsilon_{A}$ ∀t (5b) $s_{t+1} = f_{\mathrm{S}}(s_t, a_t, \delta_t) \in \mathcal{S}_{\mathrm{S}}$ $\forall t$ (5c) $\delta_t \sim p_{\Lambda}(s_t)$ $\forall t$ (5d) $a_{t+1} \sim \pi_t(s_t) \in \mathcal{A}_S$ (5e) $\forall t$

Structure of an Optimal Scaling Strategy

Theorem

If the following holds

$$\exists \pi \in \Pi_{\mathrm{S}} \text{ such that } \mathbb{E}_{\pi} \left[T^{(\mathrm{A})} \right] \ge \epsilon_{\mathrm{A}} \tag{A}$$
$$f_{\mathrm{S}}(s' \mid s, a) > 0 \qquad \forall s', s, a \qquad (\mathrm{B})$$

$$\sum_{s'=s}^{s_{ ext{max}}} f_{ ext{S}}(s' \mid \hat{s}+1, a) \geq \sum_{s'=s}^{s_{ ext{max}}} f_{ ext{S}}(s' \mid \hat{s}, a) \qquad orall s, \hat{s}, a \qquad (\mathsf{C})$$

then there exists two strategies π_{λ_1} and π_{λ_1} that satisfy

 $\pi_{\lambda_1}(s_t) = 1 \iff s_t \leq \beta_1 \qquad \pi_{\lambda_2}(s_t) = 1 \iff s_t \leq \beta_2 \quad \forall t \ (6)$

and an optimal randomized threshold strategy π^* that satisfies

$$\pi^{\star}(s_t) = \kappa \pi_{\lambda_1}(s_t) + (1 - \kappa) \pi_{\lambda_2}(s_t) \qquad \forall t \qquad (7)$$

for some probability $\kappa \in [0, 1]$.

Efficient Algorithms for Computing the Optimal Control Strategies

- The problem of computing an optimal scaling strategy has polynomial time-complexity. This follows because the problem can be formulated as a linear program of polynomial size.
- ► The problem of computing the optimal intrusion recovery strategies is in the complexity class PSPACE-HARD, and thus no efficient (polynomial-time) algorithm for solving this problem is known. (Note that P ⊆ NP ⊆ PSPACE.)
- To manage the high computational complexity of computing the optimal recovery strategies we leverage Theorem 1 and Corollary 1.

Algorithm for The Local Control Problem

Algorithm 1: Recovery Threshold Optimization (RTO)

1 Input:
$$\eta, p_A, p_{C_1}, p_{C_2}, p_U, Z, \Delta_R$$

2 Parametric optimization algorithm: PO

3 **Output:** A near-optimal local control strategy $\hat{\pi}_{\theta,t}$

4 Algorithm 5 $d \leftarrow 1 - \Delta_{\mathrm{R}} \text{ if } \Delta_{\mathrm{R}} < \infty \text{ else } d \leftarrow 1$ 6 $\Theta \leftarrow [0,1]^d$ 7 For each $\theta \in \Theta$, define $\pi_{i,\theta}(b_t)$ as $\pi_{i,\theta}(b_t) \triangleq \begin{cases} \mathfrak{R} & \text{if } b_t \ge \theta_i \text{ where } i = \max[t,d] \\ \mathfrak{W} & \text{otherwise} \end{cases}$ 8 $J_{\theta} \leftarrow \mathbb{E}_{\pi_{i,\theta}}[J_i]$ 9 $\hat{\pi}_{\theta,t} \leftarrow \mathrm{PO}(\Theta, J_{\theta})$ 10 return $\hat{\pi}_{\theta,t}$

Algorithm for The Global Control Problem

Algorithm 2: Linear Program for Scaling (LP-R)

1 Input: $s_{\max}, \epsilon_A, N, f, p_\Delta$

2 Linear programming solver: LPSolver

3 **Output:** An optimal global control strategy π^*

4 Algorithm

5 Solve the following linear program with LPSolver

$$\min_{\rho} \sum_{s \in S_{\mathrm{S}}} \sum_{a \in \mathcal{A}_{\mathrm{S}}} s\rho(s, a)$$
(8a)

(8b)

subject to

$$\rho(s, a) \ge 0 \qquad \forall s \in S_{\mathrm{S}}, a \in \mathcal{A}_{\mathrm{S}}$$
(8c)

$$\sum_{s \in S_{\alpha}} \sum_{a \in A_{\alpha}} \rho(s, a) = 1$$
(8d)

$$\begin{split} &\sum_{a \in \mathcal{A}_{\mathrm{S}}} \rho(s, a) = \sum_{s' \in \mathcal{S}_{\mathrm{S}}} \sum_{a \in \mathcal{A}_{\mathrm{S}}} \rho(s', a) f_{\mathrm{S}}(s'|s, a) \; \forall s \in \mathcal{S}_{\mathrm{S}} \quad (\text{8e}) \\ &\sum_{a \in \mathcal{A}_{\mathrm{S}}} \sum_{s} \rho(s, a) [\![s_t \ge f + 1]\!] \ge \epsilon_{\mathrm{A}} \quad (\text{8f}) \end{split}$$

 $s \in S_S a \in A_S$

Let ρ^{\star} denote the solution to the above program and define π^{\star} as

$$\pi^{\star}(\boldsymbol{a}|\boldsymbol{s}) \triangleq \frac{\rho^{\star}(\boldsymbol{s},\boldsymbol{a})}{\sum_{\boldsymbol{s}\in\mathcal{S}_{\mathrm{S}}}\rho^{\star}(\boldsymbol{s},\boldsymbol{a})} \qquad \forall \boldsymbol{s}\in\mathcal{S}_{\mathrm{S}}, \boldsymbol{a}\in\mathcal{A}_{\mathrm{S}}$$

return π^*

6

Evaluation of the RTO Algorithm (1/2)

mean values from evaluations with 20 different random seeds; \pm indicate the 95% confidence interval based on the Student's t-distribution.

Mathad	$\Delta_{\rm R}$	= 5	$ \Delta_R$	= 15	Δ_{R}	= 25	$\Delta_{\rm R}$	$=\infty$
wiethod	Time (min)	J_i	Time (min)	J_i	Time (min)	J_i	Time (min)	J_i
CEM	1.04	$\textbf{0.12} \pm \textbf{0.01}$	8.84	$\textbf{0.17} \pm \textbf{0.06}$	14.48	0.19 ± 0.08	11.81	0.16 ± 0.01
DE	2.35	$\textbf{0.12} \pm \textbf{0.03}$	8.98	$\textbf{0.17} \pm \textbf{0.01}$	15.45	$\textbf{0.18} \pm \textbf{0.02}$	22.68	0.16 ± 0.01
SPSA	10.78	0.18 ± 0.01	88.35	0.58 ± 0.40	123.85	0.77 ± 0.48	4.20	0.20 ± 0.02
BO	29.18	$\textbf{0.12} \pm \textbf{0.02}$	62.57	$\textbf{0.17} \pm \textbf{0.05}$	90.26	$\textbf{0.18} \pm \textbf{0.12}$	9.07	$\textbf{0.15} \pm \textbf{0.06}$
PPO	28.20	0.18 ± 0.01	30.01	0.19 ± 0.02	30.33	0.21 ± 0.07	28.95	$0.21 + \pm 0.09$
IP	11.11	0.12	237.06	0.17	743.73	0.18	> 10000	not converged

Evaluation of the RTO Algorithm (2/2)

Time required to compute optimal intrusion recovery strategies; the x-axis indicate different values of $\Delta_{\rm R}$; the error bars indicate the 95% confidence interval based on the Student's t-distribution with 20 measurements.

Evaluation of the LP-R Algorithm

Time required to compute optimal scaling strategies; the x-axis indicate different values of s_{max} ; the error bars indicate the 95% confidence interval based on the Student's t-distribution with 20 measurements.

Use Case & Research Problem

- Use case: intrusion tolerance
- Goal: optimal control strategies for intrusion-tolerant systems

Background

- Fault tolerance and intrusion tolerance
- State machine replication

Our Contributions

- The TOLERANCE control architecture
- Constrained two-level control problem
- Theoretical results
- Computational algorithms

Comparison with State-of-the-art

Implementation and evaluation

Conclusions

We Instantiate The TOLERANCE Control Architecture with The Computed Control Strategies

Experiment Setup - Physical Servers

Server	Processors	RAM (GB)
1, R715 2U	2 12-core AMD OPTERON	64
2, R715 2U	2 12-core AMD OPTERON	64
3, R715 2u	2 12-core AMD OPTERON	64
4, R715 2U	2 12-core AMD OPTERON	64
5, R715 2u	2 12-core AMD OPTERON	64
6, R715 2u	2 12-core AMD OPTERON	64
7, R715 2u	2 12-core AMD OPTERON	64
8, R715 2u	2 12-core AMD OPTERON	64
9 , R715 2U	2 12-core AMD OPTERON	64
10, R630 2U	2 12-core INTEL XEON E5-2680	256
11, R740 2U	1 20-core INTEL XEON GOLD5218 \mathbf{R}	32
12, SUPERMICRO 7049	2 TESLA P100, 1 16-core INTEL XEON	126
13, SUPERMICRO 7049	4 RTX 8000, 1 24-core INTEL XEON	768

Table 1: Specifications of the physical servers.

Experiment Setup - Replica Configurations

Replica ID	Operating system	Vulnerabilities
1	ubuntu 14	FTP weak password
2	ubuntu 20	${}_{\mathrm{SSH}}$ weak password
3	ubuntu 20	TELNET weak password
4	debian 10.2	CVE-2017-7494
5	ubuntu 20	CVE-2014-6271
6	debian 10.2	CVE-89 on CVE
7	debian 10.2	CVE-2015-3306
8	debian 10.2	CVE-2016-10033
9	debian 10.2	$_{\rm CVE}\mbox{-}2010\mbox{-}0426,~{\rm SSH}$ weak password
10	debian 10.2	$_{\rm CVE}\mbox{-}2015\mbox{-}5602,~{\rm SSH}$ weak password

Table 2: Replica configurations.

Experiment Setup - Emulated Intrusions

Replica ID	Intrusion steps
1	TCP SYN scan, FTP brute force
2	TCP SYN scan, SSH brute force
3	TCP SYN scan, TELNET brute force
4	ICMP scan, exploit of CVE-2017-7494
5	ICMP scan, exploit of CVE-2014-6271
6	ICMP scan, exploit of CVE-89 on on CVE
7	ICMP scan, exploit of CVE-2015-3306
8	ICMP scan, exploit of CVE-2016-10033
9	ICMP scan, SSH brute force, exploit of $\operatorname{CVE-2010-0426}$
10	ICMP scan, SSH brute force, exploit of $\operatorname{CVE-2015-5602}$

Table 3: Intrusion steps

Experiment Setup - Background Traffic

Background services	Replica ID(s)
FTP, SSH, MONGODB, HTTP, TEAMSPEAK	1
SSH, DNS, HTTP	2
SSH, TELNET, HTTP	3
SSH, SAMBA, NTP	4
SSH	5, 7, 8, 10
CVE, IRC, SSH	6
TEAMSPEAK, HTTP, SSH	9

Table 4: Background services; each background client invokes functions on service replicas.

Experiment Setup - Consensus Algorithm

We implement and extend the MINBFT Byzantine fault-tolerant consensus algorithm to be reconfigurable.

Experiment Setup - Consensus Algorithm

Throughput of our implementation of MINBFT.

System Identification

Empirical observation distributions $\widehat{Z}_1(\cdot | s), \ldots, \widehat{Z}_{10}(\cdot | s)$ as estimates of Z_1, \ldots, Z_{10} .

- Empirical distributions based on M = 25,000 samples.
- From the Glivenko-Cantelli theorem we know that $\widehat{Z} \to^{a.s} Z$ as $M \to \infty$.
- Bound:

$$\mathbb{P}\left[D_{\mathrm{KL}}(\widehat{Z}(\cdot \mid s) \parallel Z(\cdot \mid s)) \ge \epsilon\right] \le 2^{-M\left(\epsilon - |\mathcal{O}| \frac{\ln(M+1)}{M}\right)} \\ = 2^{-25 \cdot 10^{3}\left(\epsilon - 2 \cdot 10^{3} \frac{\ln(25 \cdot 10^{3}+1)}{25 \cdot 10^{3}}\right)} = 2^{-5 \cdot 10^{3}\left(5\epsilon - 4\ln(25 \cdot 10^{3}+1)\right)}$$

Comparison with State-of-the-art Intrusion-Tolerant Systems

Comparison between TOLERANCE and the baselines; the columns represent: average availability $(T^{(A)})$, average time-to-recovery $(T^{(R)})$; average recovery frequency $(F^{(R)})$; and average cost $J_i + J$; the bars indicate the mean value from evaluations with 20 different random seeds; the error bars indicate the 95% confidence interval based on the Student's t-distribution.

Conclusions

- We present TOLERANCE: a novel control architecture for intrusion-tolerant systems which improves state-of-the-art.
- We prove that the optimal control strategies have threshold structures and design efficient algorithms for computing them.
- We evaluate TOLERANCE in an emulation environment against 10 different types of network intrusions.

