
1/23

Reinforcement Learning Algorithms for Adaptive
Cyber Defense against Heartbleed

NSE ML+Security Reading Group

Kim Hammar

kimham@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

October 22, 2021

2/23

The Context and Key Points of the Paper
I The paper proposes two reinforcement learning algorithms

for Adaptive Cyber Defense

I Motivating use case: the Heartbleed vulnerability

Agent

Environment

at

st+1

rt+1

3/23

Outline

I Background
I Heartbleed

I The Paper
I Approach & Contributions
I System Model
I Proposed Algorithms
I Theoretical Analysis

I Limitations of the paper and Discussion
I Limitations of the paper
I Discussion about future work

I Conclusions

4/23

Background: Heartbleed

I A security bug in the OpenSSL library
I Released 2012
I Disclosed 2014

I Affected software: most implementations of TLS
I How it works:

I A sender in OpenSSL can send a heartbeat msg
with payload+length

I The receiver allocates a memory buffer according to
the length without verifying the length

I The receiver writes the payload to the buffer
I The receiver sends back the content of the buffer to

the sender
I Since the buffer size can be larger than the payload

(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.

4/23

Background: Heartbleed

I A security bug in the OpenSSL library
I Released 2012
I Disclosed 2014

I Affected software: most implementations of TLS
I How it works:

I A sender in OpenSSL can send a heartbeat msg
with payload+length

I The receiver allocates a memory buffer according to
the length without verifying the length

I The receiver writes the payload to the buffer
I The receiver sends back the content of the buffer to

the sender
I Since the buffer size can be larger than the payload

(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.

4/23

Background: Heartbleed (CVE-2014-0160)

I A security bug in the OpenSSL library
I Released 2012
I Disclosed 2014

I Affected software: most implementations of TLS
I How it works:

I A sender in OpenSSL can send a heartbeat msg
with payload+length

I The receiver allocates a memory buffer according to
the length without verifying the length

I The receiver writes the payload to the buffer
I The receiver sends back the content of the buffer to

the sender
I Since the buffer size can be larger than the payload

(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.

5/23

Background: Heartbleed (CVE-2014-0160)

6/23

The Paper Approach and Contributions
I Approach:

I Adaptive Cyber Defense (ACD)
I Model ACD as a decision problem
I Find defender strategies through reinforcement learning

I Contributions:
I A generic system model of security problems (minor

contribution)
I Two custom reinforcement learning algorithms

I One algorithm that only works against stable attackers
I One “robust” algorithm that works against random attackers

I Convergence proofs

RL Agent

Observations rt+1

at+1

6/23

The Paper Approach and Contributions
I Approach:

I Adaptive Cyber Defense (ACD)
I Model ACD as a decision problem
I Find defender strategies through reinforcement learning

I Contributions:
I A generic system model of security problems (minor

contribution)
I Two custom reinforcement learning algorithms

I One algorithm that only works against stable attackers
I One “robust” algorithm that works against random attackers

I Convergence proofs

RL Agent

Observations rt+1

at+1

7/23

The System Model

I The defender has n defenses:
I D , {d1, . . . , dn}

I The attacker has m attacks:
I A , {a1, . . . , am}

I Utility function U:
I U : D ×A → R

7/23

The System Model

I The defender has n defenses:
I D , {d1, . . . , dn}

I The attacker has m attacks:
I A , {a1, . . . , am}

I Utility function U:
I U : D ×A → R

7/23

The System Model

I The defender has n defenses:
I D , {d1, . . . , dn}

I The attacker has m attacks:
I A , {a1, . . . , am}

I Utility function U:
I U : D ×A → R

7/23

The General System Model

I The defender has n defenses:
I D , {d1, . . . , dn}

I The attacker has m attacks:
I A , {a1, . . . , am}

I Utility function U:
I U : D ×A → R

I That’s it!
I No explicit states (you can consider previous actions as state)
I No transition probabilities
I No observation function
I Not a sequential problem
I Assume non-rational attacker

8/23

The System Model of Heartbleed

I The defender can defend pages Pi on a heap of n
pages
I D , {P1, . . . ,Pn}
I Each page has Bi bytes of data
I Defending a subset of pages:

d(t) = {Pi ,Pk , . . .} ⊆ D
I monitor the page
I detect unwanted read operations

I The attacker attacks by sending heartbeats:
I A , D × N
I a(t) = (p(t), b(t))

I Utility function U:
I U(a, d) = c(d)− I(a, d)
I c(d) is the cost of defenses
I I(a, d) is the number of heartbeat requests

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

9/23

The System Model of Heartbleed

I The defender can defend pages Pi on a heap of n
pages
I D , {P1, . . . ,Pn}
I Each page has Bi bytes of data
I Defending a subset of pages:

d(t) = {Pi ,Pk , . . .} ⊆ D
I monitor the page
I detect unwanted read operations

I The attacker attacks by sending heartbeats:
I A , D × N
I a(t) = (p(t), b(t))

I Utility function U:
I U(a, d) = c(d)− I(a, d)
I c(d) is the cost of defenses
I I(a, d) is the number of heartbeat requests

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

9/23

The System Model of Heartbleed

I The defender can defend pages Pi on a heap of n
pages
I D , {P1, . . . ,Pn}
I Each page has Bi bytes of data
I Defending a subset of pages:

d(t) = {Pi ,Pk , . . .} ⊆ D
I monitor the page
I detect unwanted read operations

I The attacker attacks by sending heartbeats:
I A , D × N
I a(t) = (p(t), b(t))

I Utility function U:
I U(a, d) = c(d)− I(a, d)
I c(d) is the cost of defenses
I I(a, d) is the number of heartbeat requests

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

9/23

The System Model of Heartbleed

I The defender can defend pages Pi on a heap of n
pages
I D , {P1, . . . ,Pn}
I Each page has Bi bytes of data
I Defending a subset of pages:

d(t) = {Pi ,Pk , . . .} ⊆ D
I monitor the page
I detect unwanted read operations through segfaults

I The attacker attacks by sending heartbeats:
I A , D × N
I a(t) = (p(t), b(t))

I Utility function U:
I U(a, d) = c(d)− I(a, d)
I c(d) is the cost of defenses
I I(a, d) is the number of heartbeat requests

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

10/23

Defending the Heap from Heartbleed Attacks

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

10/23

Defending the Heap from Heartbleed Attacks

...

P1

P2

P3

Pn−1

Pn

d(t) = P3

Heap

10/23

Defending the Heap from Heartbleed Attacks

...

P1

P2

P3

Pn−1

Pn

d(t) = P3

Heap

(+) protect P3 from unwanted reads

10/23

Defending the Heap from Heartbleed Attacks

...

P1

P2

P3

Pn−1

Pn

d(t) = P3

Heap

(+) protect P3 from unwanted reads
(-) increase system response time c(d(t))

10/23

Defending the Heap from Heartbleed Attacks

...

P1

P2

P3

Pn−1

Pn

d(t) = P3

Heap

(+) protect P3 from unwanted reads
(-) increase system response time c(d(t))
(-) reduce system requests I(a(t), d(t))

11/23

A Heartbleed Attack

...

P1

P2

Pn−1

Pn

Page 1
B1 bytes

Heap

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

Heap

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

data
sent

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

b(t)
data
sent

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

b(t)
data
sent

breached data!
may be pws, SSH keys, ...

11/23

A Heartbleed Attack

...

P1

P2

P3

Pn−1

Pn

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

b(t)
data
sent

breached data!
may be pws, SSH keys, ...the attacker does

not know which
combinations (p(t), b(t))
will leak the sensitive data

12/23

A Detected and Prevented Attack

...

P1

P2

P3

Pn−1

Pn

d(t) = P3

a(t) = (p(t), b(t))
= (P1,B1 + B2 + B3)

p(t)

Heap

b(t)
data
sent

13/23

The Utility Function

U(a, d) = c(d)︸ ︷︷ ︸
response time

− I(a, d)︸ ︷︷ ︸
requests

(1)

c(d)

0 25 50 75 100 125 150 175 200

I(a
, d)

0
25

50
75

100
125

150
175

200
−100
−75
−50
−25

0
25
50
75
100

U(a, d) = c(d)− I(a, d))

I The defender’s goal is to minimize utility
I I.e. minimize response times and maximize requests between

attacks

14/23

First Proposed Algorithm: “Adaptive RL Algorithm”

I Assume attacker uses the same action w.p 1− εa(t) and
selects new action w.p εa(t) decided by ALGA (which is
unknown).

I Assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0

14/23

First Proposed Algorithm: “Adaptive RL Algorithm”

I Assume attacker uses the same action w.p 1− εa(t) and
selects new action w.p εa(t) decided by ALGA (which is
unknown).

I Assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0

14/23

First Proposed Algorithm: “Adaptive RL Algorithm”
I Assume attacker uses the same action w.p 1− εa(t) and

selects new action w.p εa(t) decided by ALGA (which is
unknown).

I Assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0

14/23

First Proposed Algorithm: “Adaptive RL Algorithm”

I Assume attacker uses the same action w.p 1− εa(t) and
selects new action w.p εa(t) decided by ALGA (which is
unknown).

I Assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0

I In essence:
I if current defender action was better than the previous action,

use same action w.p 1− εd(t)
I otherwise use previous action w.p 1− εd(t)
I Select random action w.p εd(t)

15/23

Theoretical Analysis of the First Algorithm: TLDR;

I Given the fixed defender policy & attacker policy, the
sequence of actions forms a Markov chain Pt

I The stationary distribution with high probability will consist of
states that are optimal for the defender.

s1,1 s1,2 s1,3 s1,4 s1,5 . . . s1,n

s2,1 s2,2 s2,3 s2,4 s2,5 . . . s2,n

...

15/23

Theoretical Analysis of the First Algorithm: TLDR;

I Given the fixed defender policy & attacker policy, the
sequence of actions forms a Markov chain Pt

I The stationary distribution with high probability will consist of
states that are optimal for the defender.

s1,1 s1,2 s1,3 s1,4 s1,5 . . . s1,n

s2,1 s2,2 s2,3 s2,4 s2,5 . . . s2,n

...

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

16/23

Theoretical Analysis of the First Algorithm
I Let the previous actions of each agent be the state

s = ((d(t), d(t − 1)), (a(t), a(t − 1)))
I Fix the exploration rate εt = [εa(t), εd(t)]
I Then (st)t≥1 is a Markov chain Pt (policies are fixed with ε

fixed)
I Assume that the Markov chain is irreducible and aperiodic.
I Then, the Markov chain has a unique stationary distribution
µt

I Playing the game will converge to this distribution

I Now let ε vary with t, then we get a sequence of stationary
distributions (µt)t≥1

I Since we assume limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0, we
have a unique limiting stationary distribution limt→∞ µt = µ∗

(Lemma 4.1).

17/23

Theoretical Analysis of the First Algorithm

I We want to show that µ∗ with high probability has the best
defender response.

I Define the set of best responses:
SBR = {s = (d , a) ∈ S|U(d , a) = mind ′∈D U(d ′, a)}.

17/23

Theoretical Analysis of the First Algorithm

I We want to show that µ∗ with high probability has the best
defender response.

I Define the set of best responses:
SBR = {s = (d , a) ∈ S|U(d , a) = mind ′∈D U(d ′, a)}.

17/23

Theoretical Analysis of the First Algorithm

I We want to show that µ∗ with high probability has the best
defender response.

I Define the set of best responses:
SBR = {s = (d , a) ∈ S|U(d , a) = mind ′∈D U(d ′, a)}.

Theorem
Consider the Markov chain Pt induced by the RL algorithm. Then,

lim
t→∞

P[st ∈ SBR × SBR] = 1 (2)

17/23

Theoretical Analysis of the First Algorithm

I We want to show that µ∗ with high probability has the best
defender response.

I Define the set of best responses:
SBR = {s = (d , a) ∈ S|U(d , a) = mind ′∈D U(d ′, a)}.

Theorem
Consider the Markov chain Pt induced by the RL algorithm. Then,

lim
t→∞

P[st ∈ SBR × SBR] = 1 (3)

I The proof is based on the theory of resistance trees
I Based on the fact that exploration diminishes and defender

always selects best action according to past

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

18/23

Second Proposed Algorithm: “Robust RL Algorithm”

I Drop assumption that limt→∞ εa(t) = 0 and limt→∞ εd(t) = 0
I This means that the adaptive algorithm will not converge

I The “robust” algorithm keeps a history
h(t) =

(
(u(0), a(0), d(0), . . . , (u(t), a(t), d(t)

)
.

I Define DMM(t) to be the set of minmax actions based on h(t).
I M(d , t) , max0≤s≤t,d(s)=d u(t),

DMM(t) , {d |M(d , t) ≤ M(d ′, t) ∀d ′ ∈ D}
I At each step t, w.p 1− εd(t) sample an action

d(t) ∼ DMM(t)
I w.p εd(t) sample a random new action, i.e.

d(t) ∼ D \ DMM(t).

19/23

Theoretical Analysis of the Second Algorithm

I Due to the non-diminishing exploration, the best-response
action may change

I Recall: with w.p εd(t) the defender always selects a random
action

I Recall: with w.p 1− εd(t) the defender selects an action
greedily based on the set DMM(t)

I We want to show that DMM(t) converges to the mini-max set
DMM ,
I i.e. w.p 1− εd(t) the defender selects an action that minimizes

the utility against at least one attacker action.
I By definition of DMM(t), if all states of the Markov chain Pt

have been visited, then DMM(t) = DMM
I Hence it is sufficient to show that Pt visits S as t →∞

19/23

Theoretical Analysis of the Second Algorithm

I Due to the non-diminishing exploration, the best-response
action may change

I Recall: with w.p εd(t) the defender always selects a random
action

I Recall: with w.p 1− εd(t) the defender selects an action
greedily based on the set DMM(t)

I We want to show that DMM(t) converges to the mini-max set
DMM ,
I i.e. w.p 1− εd(t) the defender selects an action that minimizes

the utility against at least one attacker action.
I By definition of DMM(t), if all states of the Markov chain Pt

have been visited, then DMM(t) = DMM
I Hence it is sufficient to show that Pt visits S as t →∞

19/23

Theoretical Analysis of the Second Algorithm

I Due to the non-diminishing exploration, the best-response
action may change

I Recall: with w.p εd(t) the defender always selects a random
action

I Recall: with w.p 1− εd(t) the defender selects an action
greedily based on the set DMM(t)

I We want to show that DMM(t) converges to the mini-max set
DMM ,
I i.e. w.p 1− εd(t) the defender selects an action that minimizes

the utility against at least one attacker action.
I By definition of DMM(t), if all states of the Markov chain Pt

have been visited, then DMM(t) = DMM
I Hence it is sufficient to show that Pt visits S as t →∞

19/23

Theoretical Analysis of the Second Algorithm

I Due to the non-diminishing exploration, the best-response
action may change

I Recall: with w.p εd(t) the defender always selects a random
action

I Recall: with w.p 1− εd(t) the defender selects an action
greedily based on the set DMM(t)

I We want to show that DMM(t) converges to the mini-max set
DMM ,
I i.e. w.p 1− εd(t) the defender selects an action that minimizes

the utility against at least one attacker action.
I By definition of DMM(t), if all states of the Markov chain Pt

have been visited, then DMM(t) = DMM
I Hence it is sufficient to show that Pt visits S as t →∞

20/23

Theoretical Analysis of the Second Algorithm

I Let Pt be the Markov chain induced by the robust RL
algorithm.

I Since Pt is irreducible and aperiodic by assumption, it will
visit S as t →∞

I =⇒ the robust RL algorithm converges to the minimax
strategy

20/23

Theoretical Analysis of the Second Algorithm

I Let Pt be the Markov chain induced by the robust RL
algorithm.

I Since Pt is irreducible and aperiodic by assumption, it will
visit S as t →∞

I =⇒ the robust RL algorithm converges to the minimax
strategy

20/23

Theoretical Analysis of the Second Algorithm

I Let Pt be the Markov chain induced by the robust RL
algorithm.

I Since Pt is irreducible and aperiodic by assumption, it will
visit S as t →∞

I =⇒ the robust RL algorithm converges to the minimax
strategy

21/23

Strong points of the Paper

I Real-world Use Case
I Easy to relate to the model by using well known vulnerability

I The Formal Analysis
I Convergence proofs

22/23

Limitations Drawbacks of the Paper

I A bit unorthodox approach
I Minimize utility instead of maximize
I Apply RL to a non-sequential decision problem
I Custom model, does not use existing frameworks (e.g. MDP,

normal game)

I Simplifying assumptions
I Non-rational/strategic attacker
I Assume specific exploration rates
I Assume static system

I Abstract analysis only
I No attempt to evaluate in a realistic environment

23/23

Conclusions

I Adaptive Cyber Defense against Heartbleed attacks

I Custom model and very simple reinforcement learning
algorithms

I Nice theoretical guarantees

I Abstract model and evaluation

