Deep Text Mining of Instagram Data Without Strong Supervision Master's Thesis Defense

Kim Hammar

KTH Royal Institute of Technology

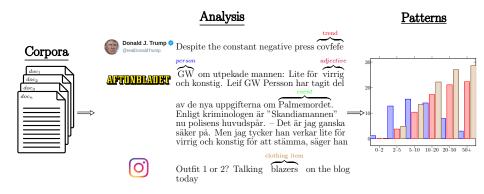
kimham@kth.se

June 1, 2018

Kim Hammar (KTH)

Text Mining in Social Medi

Extracting information and detecting patterns in unstructured text



Text understanding is hard \rightarrow AI-Complete Problem

Kim Hammar (KTH)

Text Mining in Social Media

• Ambiguous sentences: we need context to understand

Did you see her dress?

• Ambiguous sentences: we need context to understand

Did you see her dress?

Yes I was in the hall with her when she dressed. Yes It was gorgeous!

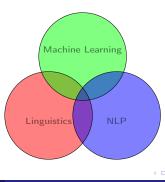
Text Mining Methods

• Classic NLP & Text Mining: Linguistic Rules

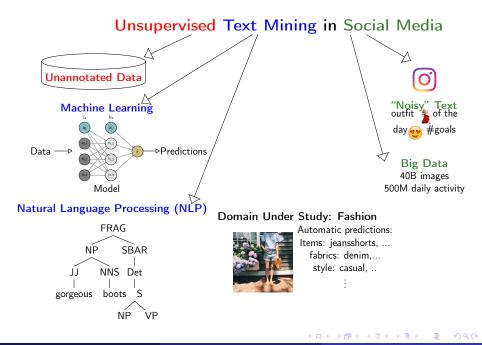
- "Two capital words in a row" \rightarrow A person's name
- Data Driven Text Mining: Machine Learning Models

$$\nabla_{\theta} L = \left(\frac{\partial L}{\partial W_{1,1}}, \dots, \frac{\partial L}{\partial W_{n,n}}\right)$$

$$\bullet \quad \text{Data} \Longrightarrow \text{Model } \theta \implies \text{Loss } L(\theta) \qquad \longrightarrow \text{Outputs}$$



Kim Hammar (KTH)

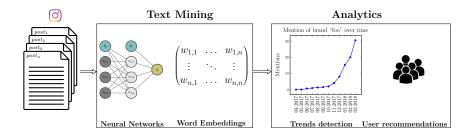


June 1, 2018 5 / 31

Problem: Unsupervised Text Mining from Instagram

• Input: Noisy Text (Image Captions, User Comments)

• Output: Fashion Attributes (Items, Fabrics, Brands... etc.)



Example Instagram Post

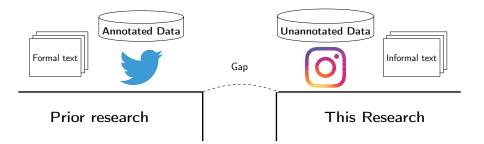
Image: Image:

Kim Hammar (KTH)

Text Mining in Social Media

June 1, 2018 7 / 31

How Our Research Stands Out From Prior Work



э

An empirical study of Instagram text

- No previous study on Instagram text exists that we are aware of
- Onsupervised extraction of fashion attributes from Instagram using Word Embeddings
 - The first evaluation of word embeddings for Instagram
 - The first distributed implementation of the FastText algorithm
 - We confirm prior results on IE and apply it to a new domain
- Solution Novel pipeline for classification with weak supervision & deep learning
 - Extension of the data programming paradigm to the multi-label setting

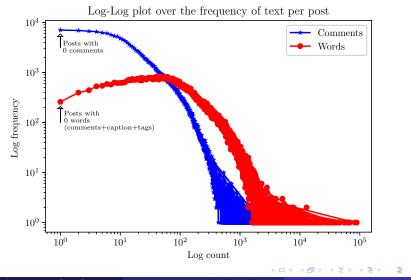
⁰All code and most of the data is open source: https://github.com/shatha2014/FashionRec

A case study of a corpora with 143 fashion accounts, 200K posts, 9M comments

- Instagram text is noisy: 47% OOV words when including URLs, emojis etc. Otherwise 30% (compared to 25% on Twitter)
- Comment sections are multi-lingual: All accounts are English, still only 52% of comments are English (total 97 languages identified)
- The text is ungrammatical: Informal spelling, unreliable capitalization.

Instagram Text Distribution Has a Long Tail

A case study of a corpora with 143 fashion accounts, 200K posts, 9M comments



Kim Hammar (KTH)

June 1, 2018 11 / 31

Conclusion from Case Study: Prefer Statistical Methods Rather Than Symbolic NLP Methods

• Instagram Text is noisy, multi-lingual, and un-grammatical

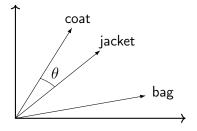
- $\bullet \rightarrow$ Linguistic methods for text mining are fragile
- \rightarrow Syntactic text matching is difficult (many languages, many synonyms, online-specific tokens etc)
- We propose: Word Embeddings as a key component in information extraction from Social Media
 - Demonstrated in the second contribution of the thesis

Word Embeddings Are Distributed Representation of Words

• Word Embeddings are vectors in \mathbb{R}^d , $d \approx 300$

Derived with optimization using the *Distributional Hypothesis*¹

- $\bullet \ \rightarrow$ Words that occur in similar contexts will obtain similar vectors
- "You shall know a word by the company it keeps" Firth '57²
- ullet ightarrow we can use the word knowledge in word embeddings for IE



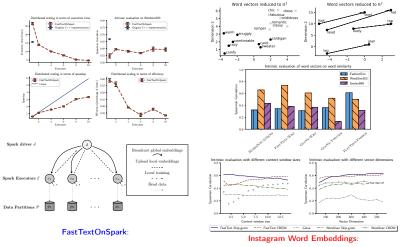
¹Zellig S Harris. "Distributional structure". In: Word 10.2-3 (1954), pp. 146–162.

²J. R. Firth. "A synopsis of linguistic theory 1930-55." In: 1952-59 (1957), pp.«1932. « ≧ → « ≧ → ~ ≧ → . . .

Kim Hammar (KTH)

Text Mining in Social Media

Contributions On Word Embeddings



• A Scalable Implementation of FastText

- Hyperparameter Tuning
- Comparison With Off-The-Shelf Embeddings

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

• Extrinsinc and Intrinsic Evalutations

Kim Hammar (KTH)

June 1, 2018 14 / 31

Unsupervised Information Extraction using Word Embeddings and a Fashion Ontology

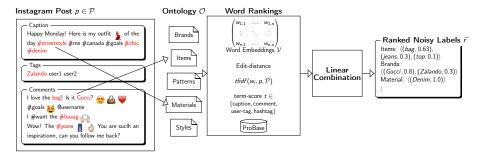


Figure: An information extraction system for social media text. The system extracts fashion details from text associated with Instagram posts.

イロト イポト イヨト イヨト

Word Embeddings Outperform Syntactic Baseline for IE $_{\mbox{\tiny Results}}$

• IE with word embeddings outperform IE based on edit-distance (*p* < 0.05)

Mathad/Catagon	NDGC@1	NDGC@3	NDGC@5	NDGC@10	P@1	P@3	P@5	P@10	MAP
Method/Category	NDGC@I	NDGC@3	NDGC@5	NDGC@10	PUI	P@3	P@5	P@10	MAP
SemCluster/Item	0.833	0.658	0.691	0.807	0.833	0.546	0.454	0.309	0.733
SynCluster/Item	0.781	0.581^{-}	0.607^{-}	0.767^{-}	0.781	0.474^{-}	0.370^{-}	0.296	0.641^{-}
SemCluster/Style	0.399	0.505	0.519	0.548	0.417	0.204	0.139	0.069	0.539
SynCluster/Style	0.367	0.415^{-}	0.425^{-}	0.507	0.367	0.130^{-}	0.123	0.069	0.474^{-}
SemCluster/Pattern	0.087	0.179	0.353	0.444	0.087	0.110	0.169	0.118	0.296
SynCluster/Pattern	0.108	0.413	0.498	0.512	0.108	0.221	0.193	0.117	0.395
SemCluster/Material	0.296	0.286	0.324	0.393	0.286	0.264	0.233	0.165	0.373
SynCluster/Material	0.113^{-}	0.104^{-}	0.137^{-}	0.209^{-}	0.113^{-}	0.107^{-}	0.109^{-}	0.092^{-}	0.227^{-}
SemCluster/Brand	0.062	0.066	0.062	0.064	0.032	0.056	0.036	0.039	0.194
SynCluster/Brand	0.016	0.010	0.010	0.010	0.016	0.005	0.003	0.002	0.159

 ^{2}A smaller, hand-labeled dataset by experts was used for evaluation

16 / 31

Text Mining with Word Embeddings and a smaller domain ontology:

Pros:

- Does not require annotated data
- Can deal with noisy text
- Transparent model

Cons:

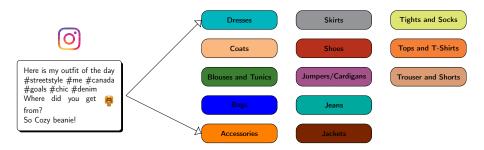
- Require feature engineering
- Require a domain ontology

Can we reduce manual feature engineering and learn from data?

Problem: We don't have annotated data (yet) Solution: Weakly supervised learning

A multi-class multi-label classification problem

13 Output Classes



3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

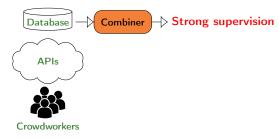
Alternative Sources of Supervision That Are Cheap but Weak

Sources of Weak Supervision

• Strong supervision: Manual annotation by expert

Domain Heuristics

 Weak supervision: A signal that does not have full coverage/perfect accuracy



How To Combine Several Sources Of Weak Supervision?

• Simplest way to combine many weak signals: Majority Vote

 Recent research on combination of weak signals: Data Programming Paradigm³

> Data Programming: Creating Large Training Sets, Quickly

Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, Christopher Ré Stanford University {ajratner,cdesa,senwu,dselsam,chrismre}@stanford.edu

³Alexander J Ratner et al. "Data Programming: Creating Large Training Sets, Quickly". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., 2016, pp. 3567–3575. url: http://papers.nips.cc/paper/6523-data-programming-creating-large-training-sets=quickly.pdf. = > = •

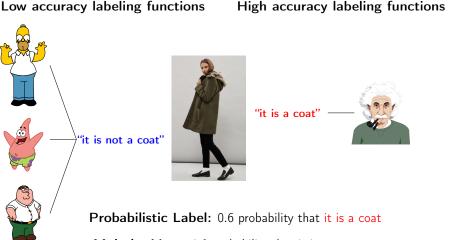
Kim Hammar (KTH)

Fext Mining in Social Media

June 1, 2018 20 / 31

Data Programming: Model Weak Supervision With Generative Model

- Model weak supervision as labeling functions λ_i
 - λ_i (unlabeled data) \rightarrow label
- Learn Generative Model $\pi_{\alpha,\beta}(\Lambda, Y)$ over the labeling process.
 - Based on conflicts between labeling functions assign the functions an estimated accuracy α_i .
 - Based on empirical coverage of labeling functions assign the functions a coverage β_i .
- Given α and β for each labeling function, it can be used to combine labels into a single probabilistic label
 - Give more weight to high-accuracy functions
 - $\bullet~$ If there is a lot of disagreement $\rightarrow~$ low probability label
 - If all labeling functions agree \rightarrow high probability label



Majority Vote: 1.0 probability that it is not a coat

June 1, 2018

22 / 31

Pipeline for Weakly Supervised Classification in Instagram

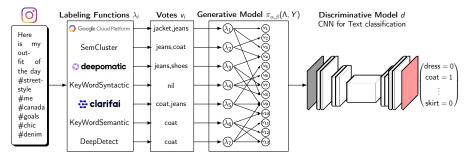


Figure: A pipeline for weakly supervised text classification of Instagram posts.

Extension of Data Programming to Multi-Label Classification

- Problem: Data programming only defined for binary classification in original paper
- To make it work for multi-class setting: model labeling function as $\lambda_i \rightarrow k_i \in \{0, \dots, N\}$ instead of $\lambda_i \rightarrow k_i \in \{-1, 0, 1\}$.
- Idea 1 for multi-label: model labeling function as $\lambda_i \rightarrow \vec{k_i} = \{v_0, \dots, v_n\} \land v_j \in \{-1, 0, 1\}$
- Idea 2 for multi-label: learn a separate generative model for each class, and let each labeling function give binary output for each class $\lambda_{i,j} \rightarrow k_{i,j} \in \{-1, 0, 1\}$.

Trained Generative Models: Labeling Functions' Accuracy Differ Between Classes

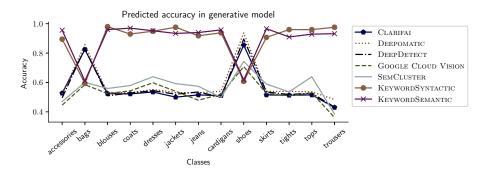


Figure: Multiple generative models can capture a different accuracy for labeling functions for different classes.

- I have extended Kim Yoon's CNN model for text classification⁴
- To train the model with probabilistic labels produced by generative model, I use a *noise-aware* loss function⁵:

$$\frac{1}{N}\sum_{i=0}^{N} -(p(Y_i|\Lambda_i)\log(\sigma(\hat{y_i})) + ((1-p(Y_i|\Lambda_i))\log(1-\sigma(\hat{y_i})))) \quad (1)$$

Kim Hammar (KTH)

Text Mining in Social Media

⁴Yoon Kim. "Convolutional Neural Networks for Sentence Classification". In: *EMNLP*. ACL, 2014, pp. 1746–1751.

⁵ N is the number of classes, $p(Y_i|\Lambda_i)$ is the probabilistic labels for class *i*, and \hat{y}_i is the logits for class $i \ge -9.0$

Data Programming Beats Majority Voting and the Multi-Channel Model Was Not Useful

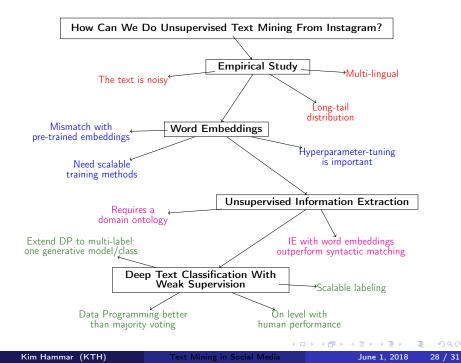
Results

• Data programming gives 6 F_1 points improvement over majority vote⁶, achieving an F_1 score of 0.61 (On level with human performance)

Model	Accuracy	Precision	Recall	Micro-F ₁	Macro-F ₁	Hamming Loss
CNN-DataProgramming	$\textbf{0.797} \pm 0.01$	$\textbf{0.566} \pm 0.05$	$\textbf{0.678} \pm \textbf{0.04}$	$\textbf{0.616} \pm 0.02$	$\textbf{0.535} \pm 0.01$	$\textbf{0.195} \pm 0.02$
CNN-MajorityVote	$\textbf{0.739} \pm \textbf{0.02}$	$\textbf{0.470} \pm \textbf{0.06}$	$\textbf{0.686} \pm 0.05$	0.555 ± 0.03	$\textbf{0.465} \pm \textbf{0.05}$	$\textbf{0.261} \pm \textbf{0.03}$

• Main cause of error: data sparsity (can not extract clothing items from the text if it is never mentioned in the text)

⁶A smaller, hand-labeled dataset by experts was used for evaluation



- Instagram text is just as noisy as Twitter, comment sections are multi-lingual, long tail text distribution
- Word Embeddings are useful for IE, especially in social media
- Deep learning with weak supervision and data programming is a promising approach for text mining in social media

Main line of future work:

Combine text analytics with image analysis⁷

Thanks:

Shatha Jaradat, Nima Dokoohaki Ph.D, Prof. Mihhail Matskin

⁷Shatha Jaradat. "Deep Cross-Domain Fashion Recommendation". In: Proceedings of the Eleventh ACM Conference on Recommender Systems. RecSys '17. Como, Italy: ACM, 2017, pp. 407–410. isbn: 978-1-4503-4652-8. doi: 10.1145/3109859.3109861. url: http://doi.acm.org/10.1145/3109859:3109861.

Questions

글 🛌 😑

・ロト ・母ト ・ヨト・