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The prediction task
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Figure: The mobile app will read data from the phone’s accelerometer and feed
that into a neural network model for predicting human activities
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Background

Open source Heterogeneity Activity Recognition Data Set1

Data collected by Stisen et al.2

Magnitude ∼ 10GB with sliding windows

LSTM model inspiration from Venelin Valkov3

Distributed training with TensorFlowOnSpark 4 running on
hops.site

1https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition

2Allan Stisen et al. “Smart Devices Are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity
Recognition”. In: Proceedings of the 13th ACM Conference on Embedded Networked Sensor Systems. SenSys ’15. Seoul,
South Korea: ACM, 2015, pp. 127–140. isbn: 978-1-4503-3631-4. doi: 10.1145/2809695.2809718. url:
http://doi.acm.org/10.1145/2809695.2809718.

3Venelin Valkov. Human Activity Recognition using LSTMs on AndroidTensorFlow for Hackers.
https://medium.com/@curiousily/human-activity-recognition-using-lstms-on-android-tensorflow-for-hackers-

part-vi-492da5adef64. 2017.
4https://github.com/yahoo/TensorFlowOnSpark
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Data Exploration
Output classes
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Figure: Distribution of classes among training examples
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Data Exploration
Sensor data
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(a) Sensor input for the activity ”bike”
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(b) Sensor input for the activity ”sit”

Figure: Sensor inputs for the activities ”bike” and ”sit”. x = blue, y = green, z =
red
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The Model

Neural Network Model

Two FCC Layers

Two LSTM layers

Size5=
Nbits(3 · 64 + 2(4(642 +
642))+64 ·7 = 32b ·66176 =
2117632b ≈ 260KB

Softmax

y1, y2, y3, y4, y5, y6, y7 Output

(?,3)sequence

(unrolled), trunc=200t

FCC Layer (64,7)

Sliding window of sensor inputs collected at 100 Hz

FCC layer (3,64)

(unrolled), trunc=200t

LSTM Layer (64,1)

LSTM Layer(1,64)

Figure: Neural Network Model

5Bias terms are excluded from this calculation. Each LSTM cell has 4 input gates, each one having one input weight matrix
W of size 642 and one input recurrent weight matrix U of size 642.
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Distributed Training & On-edge Inference
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Spark Executors/Model Replicas

Spark Driver/Parameter Server
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Figure: Distributed synchronous/asynchronous SGD on hops. Final model is
frozen and downloaded to mobile client.
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Results
Accuracy for single node training
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Figure: Accuracy and Loss over time during training for 50 epochs. Best result:
97% accuracy (24h training on single machine) Each epoch accounts for ≈
510 batches. Batch size = 1000 sequences of length 200
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Results
Training Time
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(a) Training time benchmarks

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

local-1-cpu spark-8-exec-asyncspark-8-exec-sync local-gpu

te
st

-s
et

 a
cc

u
ra

cy

Training setup

Accuracy with respect to step size for different training setups

2000-steps
5000-steps

10000-steps
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Figure: Asynchronous SGD yielded near linear training speedup but slower
convergence. Synchronous SGD was the slowest and suffered from exploding
gradients (NaN loss). This indicates that the learning rate need to be fine-tuned
for distributed training. TF-GPUs don’t support full LSTM operations, did only
give small boost over CPU.
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App Facts and Demo

Model size - ≈ 1.5 MB. Huge models, for example, Google’s
Inception V3 up to ≈ 100 MB.

TensorFlow libraries for Android (if you want to target all CPU
architectures) ≈ 50 MB. Can be reduced in Android 8 using Neural
Network API.

Core ML in iOS 11, support for frozen TensorFlow models.

Emulator and live demo!
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Questions?
Try the code: project har 2 on hops.site.

Public Dataset folder : HAR Dataset/ The folder contains:

README.md with details about the data, preprocessing, the
notebooks, and evaluation.
The dataset in its original form and its cleaned form
Notebooks for preprocessing the data, training with gpu, training with
cpu, training with spark-sync-SGD, and training with spark-async-SGD
Android App for inference with a frozen version of the model on
android phones.
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