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Use Case: Intrusion Response

I A defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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Automated Intrusion Response

Levels of security automation

No automation.
Manual detection.
Manual prevention.

Lack of tools.

1980s 1990s 2000s-Now Research

Operator assistance.
Audit logs

Manual detection.
Manual prevention.

Partial automation.
Manual configuration.

Intrusion detection systems.
Intrusion prevention systems.

High automation.
System automatically

updates itself.
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Can we find effective security strategies through decision-theoretic methods?
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Our Framework for Automated Intrusion Response
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Creating a Digital Twin of the Target Infrastructure
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Learning of Defender Strategies
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Example Infrastructure Configuration

I 64 nodes
I 24 ovs switches
I 3 gateways
I 6 honeypots
I 8 application servers
I 4 administration servers
I 15 compute servers

I 11 vulnerabilities
I cve-2010-0426
I cve-2015-3306
I etc.

I Management
I 1 sdn controller
I 1 Kafka server
I 1 elastic server
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Emulating Physical Components

Containers

Physical server

Operating system

Docker engine

Our framework

I We emulate physical components with Docker containers
I Focus on linux-based systems
I Our framework provides the orchestration layer
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Emulating Network Connectivity

Management node 1
Emulated IT infrastructure

Management node 2
Emulated IT infrastructure

Management node n
Emulated IT infrastructure

VXLAN VXLAN . . . VXLAN

IP network

I We emulate network connectivity on the same host using
network namespaces

I Connectivity across physical hosts is achieved using VXLAN
tunnels with Docker swarm
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Emulating Network Conditions

I Traffic shaping using NetEm

I Allows to configure:
I Delay
I Capacity
I Packet Loss
I Jitter
I Queueing delays
I etc.

User space

. . .
Application processes

Kernel

TCP/UDP

IP/Ethernet/802.11

OS
TCP/IP
stack

Queueing
discipline

Device driver
queue (FIFO)

NIC

Netem config:
latency,

jitter, etc.

Sockets
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Emulating Clients
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ)
I Client service times Exp(µ)
I Service dependencies (St)t=1,2,... ∼ mc
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Emulating The Attacker and The Defender

I API for automated
defender and attacker
actions

I Attacker actions:
I Exploits
I Reconnaissance
I Pivoting
I etc.

I Defender actions:
I Shut downs
I Redirect
I Isolate
I Recover
I Migrate
I etc.

Markov Decision Process

s1,1 s1,2 s1,3 . . . s1,4

s2,1 s2,2 s2,3 . . . s2,4

Digital Twin
. . .

Virtual
network

Virtual
devices

Emulated
services

Emulated
actors

IT Infrastructure
Configuration

& change events

System traces

Verified security policy

Optimized security policy
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Software framework

Metastore

Python libraries

Management api

rest api cli

grpc
Management api

Digital twins

I More details about the software framework
I Source code: https://github.com/Limmen/csle
I Documentation: http://limmen.dev/csle/
I Demo: https://www.youtube.com/watch?v=iE2KPmtIs2A

https://github.com/Limmen/csle
http://limmen.dev/csle/
https://www.youtube.com/watch?v=iE2KPmtIs2A
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System Identification

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems



12/52

System Model

H C

∅

Crashed

Healthy Compromised

Model
complexity

Static attacker
Small set of responses

Dynamic attacker
Small set of responses

Dynamic attacker
Large set of responses

I Intrusion response can be modeled in many ways
I As a parametric optimization problem
I As an optimal stopping problem
I As a dynamic program
I As a game
I etc.
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Related Work on Learning Automated Intrusion Response

External validity

model
complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)

Xiao et al. 2021.
(RL approach to APT )

etc. 2022-2023

Our work 2020-2023
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Intrusion Response through Optimal Stopping

I Suppose
I The attacker follows a fixed strategy (no adaptation)
I We only have one response action, e.g., block the gateway

I Formulate intrusion response as optimal stopping

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
affect the intrusion

Episode
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Intrusion Response from the Defender’s Perspective
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Intrusion Response from the Defender’s Perspective
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Intrusion Response from the Defender’s Perspective
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When to take a defensive action?
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The Defender’s Optimal Stopping Problem (1/3)
I Infrastructure is a discrete-time dynamical system (st)T

t=1
I Defender observes a noisy observation process (ot)T

t=1
I Two options at each time t: (C)ontinue and (S)stop

I Find the optimal stopping time τ?:

τ? ∈ arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
stst+1 + γτ−1RS

sτ sτ

]
where RS

ss′ & RC
ss′ are the stop/continue rewards and τ is
τ = inf{t : t > 0, at = S}

t

ot

τ∗
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The Defender’s Optimal Stopping Problem (2/3)

I Objective: stop the attack as soon as possible

I Let the state space be S = {H,C, ∅}

H C

∅
Stopped

Healthy Compromised
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The Defender’s Optimal Stopping Problem (3/3)

I Let the observation process (ot)T
t=1 represent ids alerts

0 2000 4000 6000 8000

p
ro

b
ab

il
it

y

cve-2010-0426

0 2000 4000 6000 8000

cve-2015-3306

0 2000 4000 6000 8000

cve-2015-5602

0 2000 4000 6000 8000

cve-2016-10033

0 2000 4000 6000 8000

cwe-89

0 2000 4000 6000 8000
O

p
ro

b
a
b

il
it

y

cve-2017-7494

0 2000 4000 6000 8000
O

cve-2014-6271

0 5000 10000 15000 20000
O

ftp brute force

0 5000 10000 15000 20000
O

ssh brute force

0 5000 10000 15000 20000
O

telnet brute force

intrusion no intrusion intrusion model normal operation model

I Estimate the observation distribution based on M samples
from the twin

I E.g., compute empirical distribution Ẑ as estimate of Z
I Ẑ →a.s Z as M →∞ (Glivenko-Cantelli theorem)
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Optimal Stopping Strategy

I The defender can compute the belief

bt , P[Si ,t = C | b1, o1, o2, . . . ot ]

I Stopping strategy: π(b) : [0, 1]→ {S,C}
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Optimal Threshold Strategy

Theorem
There exists an optimal defender strategy of the form:

π?(b) = S ⇐⇒ b ≥ α? α? ∈ [0, 1]

i.e., the stopping set is S = [α?, 1]

b
0 1

belief space B = [0, 1]

S1

α?1
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Optimal Multiple Stopping
I Suppose the defender can take L ≥ 1 response actions
I Find the optimal stopping times τ?L , τ?L−1, . . . , τ?1 :

(τ?l )l=1,...,L ∈ arg max
τ1,...,τL

Eτ1,...,τL

[
τL−1∑
t=1

γt−1RC
stst+1 + γτL−1RS

sτL sτL
+

τL−1−1∑
t=τL+1

γt−1RC
stst+1 + γτL−1−1RS

sτL−1 sτL−2
+ . . .+

τ1−1∑
t=τ2+1

γt−1RC
stst+1 + γτ1−1RS

sτ1 sτ1

]

where τl denotes the stopping time with l stops remaining.

t

ot

τ?L τ?L−1 τ?L−2 . . .
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Optimal Multi-Threshold Strategy
Theorem
I Stopping sets are nested Sl−1 ⊆ Sl for l = 2, . . . L.
I If (ot)t≥1 is totally positive of order 2 (TP2), there exists an

optimal defender strategy of the form:

π?l (b) = S ⇐⇒ b ≥ α?l , l = 1, . . . , L

where α?l ∈ [0, 1] is decreasing in l .

b
0 1

belief space B = [0, 1]

S1

S2

...

SL

α?1α?2α?L . . .
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Optimal Stopping Game
I Suppose the attacker is dynamic and decides when to start

and abort its intrusion.

Attacker

Defender

t = 1
t = T

τ1,1 τ1,2 τ1,3

τ2,1

t

Stopped

Game episode
Intrusion

I Find the optimal stopping times

maximize
τD,1,...,τD,L

minimize
τA,1,τA,2

E[J ]

where J is the defender’s objective.
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Best-Response Multi-Threshold Strategies (1/2)

Theorem
I The defender’s best response is of the form:

π̃D,l (b) = S ⇐⇒ b ≥ α̃l , l = 1, . . . , L

I The attacker’s best response is of the form:

π̃A,l (b) = C ⇐⇒ π̃D,l (S | b) ≥ β̃H,l , l = 1, . . . , L, s = H
π̃A,l (b) = S ⇐⇒ π̃D,l (S | b) ≥ β̃C,l , l = 1, . . . , L, s = C
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Best-Response Multi-Threshold Strategies (2/2)

bDefender
0 1

S
(D)
1,π2,l

S
(D)
2,π2,l

...

S
(D)
L,π2,l

α̃1α̃2α̃L . . .

bAttacker
0 1

S
(A)
C,1,πD,l

S
(A)
C,L,πD,l

β̃C,1β̃C,Lβ̃H,1 . . . β̃H,L . . .

S
(A)
H,1,πD,l

S
(A)
H,L,πD,l
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Efficient Computation of Best Responses
Algorithm 1: Threshold Optimization

1 Input: Objective function J , number of thresholds L,
parametric optimizer PO

2 Output: A approximate best response strategy π̂θ
3 Algorithm
4 Θ← [0, 1]L
5 For each θ ∈ Θ, define πθ(bt) as

6 πθ(bt) ,
{
S if bt ≥ θi

C otherwise
7 Jθ ← Eπθ [J ]
8 π̂θ ← PO(Θ, Jθ)
9 return π̂θ

I Examples of parameteric optimization algorithmns: CEM, BO,
CMA-ES, DE, SPSA, etc.
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Threshold-Fictitious Play to Approximate an Equilibrium

π̃A ∈ BA(πD)

πA

πD

π̃D ∈ BD(πA)

π̃′A ∈ BA(π′D)

π′A

π′D

π̃′D ∈ BD(π′A)

. . .

π?A ∈ BA(π?D)

π?D ∈ BD(π?A)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively
I Average best responses to approximate the equilibrium
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Comparison against State-of-the-art Algorithms
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PPO ThresholdSPSA Shiryaev’s Algorithm (α = 0.75) HSVI upper bound
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Learning Curves in Simulation and Digital Twin
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Learning Curves in Simulation and Digital Twin
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Stopping is about timing; now we consider timing + action selection
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General Intrusion Response Game

I Suppose the defender and the attacker
can take L actions per node

I G = 〈{gw} ∪ V, E〉: directed tree
representing the virtual infrastructure

I V: set of virtual nodes

I E : set of node dependencies

I Z: set of zones
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State Space

I Each i ∈ V has a state

v i ,t = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...
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Workflows

I Services are connected into workflows W = {w1, . . . ,w|W|}.
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Workflows

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
subtree Gw = 〈{gw} ∪ Vw, Ew〉
of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow tree
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Observations

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z
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Defender
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii) stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App node

Defender

Revoke
certificates

Blacklist
IP

1) Node migration 2) Flow migration and blocking

3) Shut down node 4) Access control
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Attacker
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii) compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution
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The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ]

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t ) ∀t

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t
E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} when following the strategy profile (πD, πA)

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si )i∈N , (Ai )i∈N , (fi )i∈N , u, γ, (b(i)
1 )i∈N ,O,Z 〉
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Existence of a Solution

Theorem
Given the po-posg Γ, the following holds:

(A) Γ has a mixed Nash equilibrium and a value function
V ? : BD × BA → R.

(B) For each strategy pair (πA, πD) ∈ ΠA × ΠD, the best
response sets BD(πA) and BA(πD) are non-empty.
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The Curse of Dimensionality
I While Γ has a value, computing it is intractable. The state,

action, and observation spaces of the game grow
exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|
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The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.
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We tackle the scability challenge with decomposition
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Intuitively..
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Our Approach: System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level with optimal substructure

3. Threshold properties of local defender strategies.
I Optimal node-level strategies exhibit threshold structures
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Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .
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Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i )

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)
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Additive Structure Across Workflows
Theorem (Node independencies)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary (Additive structure across workflows)
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t
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Optimal Substructure Within a Workflow

I Nodes in the same workflow are utility
dependent.

I =⇒ Adding locally-optimal strategies
does not yield an optimal workflow
strategy.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1
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t,1

S(D)
t,2
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t,2 Ut,2

S(A)
t,2

S(D)
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A(D)
t,3 Ut,3

S(A)
t,3
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Scalable Learning through Decomposition

1 2 3 4 5 6 7 8 9 10

2

4
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8

10

linear
measured

# parallel processes n

|V| = 10
Sp

ee
du

p
S
n

Speedup of best response computation for the decomposed game; Tn
denotes the completion time with n processes; the speedup is calculated
as Sn = T1

Tn
; the error bars indicate standard deviations from 3

measurements.
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Threshold Properties of Local Defender Strategies.

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

I A node can be in three attack states s(A)
t : Healthy,

Discovered, Compromised.
I The defender has a belief state b(D)

t
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Proof Sketch (Threshold Properties)
I Let L(e1, b̂) denote the line segment

that starts at the belief state
e1 = (1, 0, 0) and ends at b̂, where b̂ is
in the sub-simplex that joins e2 and e3.

I All beliefs on L(e1, b̂) are totally
ordered according to the Monotone
Likelihood Ratio (MLR) order. =⇒ a
threshold belief state αb̂ ∈ L(e1, b̂)
exists where the optimal strategy
switches from C to S.

I Since the entire belief space can be
covered by the union of lines L(e1, b̂),
the threshold belief states αb̂1 , αb̂2 , . . .
yield a switching curve Υ.

Belief space B(j)
D

(the 2-dimensional unit simplex)

sub-simplex B(j)
D,e1

joining e2 and e3b̂5
b̂4

b̂3
b̂2

b̂1

b̂6
b̂7
b̂8
b̂9

L(e1, b̂5)

Switching curve
Υ

Threshold
belief state αb̂9

e1
(1, 0, 0)

e2
(0, 1, 0)

e3
(0, 0, 1)
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Decompositional Fictitious Play (DFSP)

π̃A ∈ BA(πD)

πA

πD

π̃D ∈ BD(πA)

π̃′A ∈ BA(π′D)

π′A

π′D

π̃′D ∈ BD(π′A)

. . .

π?A ∈ BA(π?D)

π?D ∈ BD(π?A)

Fictitious play: iterative averaging of best responses.

I Learn best response strategies iteratively through the
parallel solving of subgames in the decomposition

I Average best responses to approximate the equilibrium
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Learning Equilibrium Strategies

0 20 40 60 80 100
running time (h)

0

5

δ̂ = 0.4

Approximate exploitability δ̂

0 20 40 60 80 100
running time (h)

0.0

0.5

1.0
Defender utility per episode

dfsp simulation dfsp digital twin upper bound oi,t > 0 random defense

Learning curves obtained during training of dfsp to find optimal
(equilibrium) strategies in the intrusion response game; red and blue
curves relate to dfsp; black, orange and green curves relate to baselines.
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Comparison with NFSP

0 10 20 30 40 50 60 70 80
running time (h)

0.0

2.5

5.0

7.5

Approximate exploitability

dfsp nfsp

Learning curves obtained during training of dfsp and nfsp to find
optimal (equilibrium) strategies in the intrusion response game; the red
curve relate to dfsp and the purple curve relate to nfsp; all curves
show simulation results.
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Conclusions

I We develop a framework to
automatically learn security strategies.

I We apply the framework to an
intrusion response use case.

I We derive properties of optimal
security strategies.

I We evaluate strategies on a digital
twin.

I Questions → demonstration

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation

Target
System

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation &
Learning


