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“Data is the hardest part of ML and the most important piece to
get right.

Modelers spend most of their time selecting and transforming

features at training time and then building the pipelines to deliver
those features to production models.”

- Uber?

2Jeremy Hermann and Mike Del Balso. Scaling Machine Learning at Uber with Michelangelo.
https://eng.uber.com/scaling-michelangelo/. 2018.
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Merging Our Data Intensive and Compute Intensive

Workloads
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© What is a Feature Store
@ Why You Need a Feature Store
© How to Build a Feature Store (Hopsworks Feature Store)

Q@ Demo
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Solution: Disentangle ML Pipelines

with a Feature Store

Raw /Structured Data Models

Feature Englneerlng Training

- - Feature Store | =

@ A feature store is a central vault for storing documented, curated, and
access-controlled features.

@ The feature store is the interface between data engineering and data
model development

Kim Hammar (Logical Clocks) April 23, 2019 5/ 22



Make ML-Features A First-Class Citizen in Your Data Lakes

Traditional Feature Engineering Feature Engineering w Feature Store

N spark tasks Derived data Model Training N spark tasks Derived data Model Training

Metadata

Feature Store

@ Make your features first-class citizens:
e Document features
e Version features
o Invest in a data layer specifically for features (feature store)
o Make features access-controlled and searchable
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What is a Feature?

A feature is a measurable property of some data-sample

A feature could be..
@ An aggregate value (min, max, mean, sum)
@ A raw value (a pixel, a word from a piece of text)
@ A value from a database table (the age of a customer)
@ A derived representation: e.g an embedding or a cluster
Features are the fuel for Al systems:

Gradient
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Feature Engineering is Crucial for Model Performance
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Feature Engineering is Complex

Input Data
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Feature Engineering is Complex Yet Crucial for Model Performance

Treat your features accordingly!
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Feature Pipeline Jungles

Data Lake (Raw/Structured Data)

Feature Data (Derived Data)

S
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Disentangle Your ML Pipelines with a Feature S

Data Sources

Feature Store
A data management platform for machine learning.
The interface between data engineering and data science.

200

Models >
Models are trained using sets of features.
The features are fetched from the feature store
and can overlap between models.

(~10,0) (0,-10)
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Disentangle Your ML Pipelines with a Feature Store

Versioning
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Disentangle Your ML Pipelines with a Feature Store

Backfilling
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High-Level APls and Abstractions

from hops import featurestore
features_df = featurestore.get_features(
L
"average_attendance",
"average_player_age"

D

featurestore.create_featuregroup (
f_df, "t_features",

description="...", version=2)

d_dir = featurestore.get_training_dataset_path(td_name)

tf_schema = featurestore.get_tf_record_schema(td_name)
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Existing Feature Stores

@ Uber's feature store*

Airbnb's feature store®

Comcast's feature store®

Facebook's feature store’

GO-JEK's feature store®

Twitter's feature store®

Branch International’s feature storel

0

@ Hopsworks' feature store!® (the only open-source one!)

4Li Erran Li et al. “Scaling Machine Learning as a Service”". In: Proceedings of The 3rd International
Conference on Predictive Applications and APIs. Ed. by Claire Hardgrove et al. Vol. 67. Proceedings of Machine
Learning Research. Microsoft NERD, Boston, USA: PMLR, 2017, pp. 14-29. URL:
http://proceedings.mlr.press/v67/1i17a.html.

5Nikhil Simha and Varant Zanoyan. Zipline: Airbnb’s Machine Learning Data Management Platform.
https://databricks.com/session/zipline-airbnbs-machine-learning-data-management-platform. 2018.

®Nabeel Sarwar. Operationalizing Machine Learning—Managing Provenance from Raw Data to Predictions.
https://databricks.com/session/operationalizing-machine-learning-managing-provenance-from-raw-data-to-
predictions. 2018.

7Kim Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective’. In
Feb. 2018, pp. 620-629. DOI: 10.1109/HPCA.2018.00059.

8Willem Pienaar. Building a Feature Platform to Scale Machine Learning | DataEngConf BCN '18.
https://www.youtube.com/watch?v=0iCXY6VnpCc. 2018.
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The Components of a Feature Store

Feature Storage

oood
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The Components of a Feature Store

Feature Metadata
Schema Statistics Documentation Jobs

Feature Storage

]
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The Components of a Feature Store

Client Interface

API Feature Registry
R
from hops import featurestore
features_df = featurestore.get_features( /\;I 5
[
"average_attendance",

"average_player_age"

Feature Metadata
Schema Statistics Documentation Jobs

Feature Storage

]
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Hopsworks Feature Store
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Hopsworks Feature Store

Feature Metadata

My NDB Cluster
Schema Statistics Documentation Jobs

@ Parquet 'I'
Training Datasets

HIVE
Feature groups

@Eﬁ@@ @@@@Eﬁ
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Hopsworks Feature Store
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Hopsworks Feature Store

Client Interface Hopsworks

API @ python !Scala Feature Registry
from hops import featurestore
features_df = featurestore.get_features( /\;l %
[
"average_attendance",

"average_player_age" T
n

Feature Metadata

MySQL' NDB Cluster
Schema Statistics Documentation Jobs

@
®Parquet  ©
Training Datasets ()
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Hopsworks Feature Store

Client Interface Hopsworks

APl @ puthon !S:ala Feature Registry
from hops import featurestore
features_df = featurestore.get_features( /\;l 5
[
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"average_player_age" T
D

Feature Engineering

Feature Metadata

My NDB Cluster
-l,‘ pYTb’RCH Schema Statistics Documentation Jobs

Gradient V / = \ Gradient V

i

- @ Feature Storage

- @ & Parquet '|-
HVE

Gradient V Gradient V Feature groups Training Datasets

@Eﬁ@@ @@Eﬁ@

Model Training/Serving HopsF'S @
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Hopsworks Feature Store

§3 Spark .
—> —>
HopsFS &
P @ Fink L0
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ature Creation Example

- )
Transactions

Spark

sum_trx_amount

Kim Hammar (Logical Clocks)

O —

from hops import featurestore
trx_df = spark.read.parquet(..)

trx_sum_amount_df = trx_df.select("amount,customer")
.groupBy ("customer")
.agg(sum("amount™))

featurestore.create_featuregroup (
trx_sum_amount_df,
"trx_sum_amount",
description="sum of transactions"
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Demo-Setting

Raw/Structured Data Curated Features
Feature

Computation
B
A
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Summary

@ Machine learning comes with a high technical cost

@ Machine learning pipelines needs proper data management

o A feature store is a place to store curated and documented features
@ The feature store serves as an interface between feature engineering
and model development, it can help disentangle complex ML pipelines
Hopsworks'? provides the world's first open-source feature store

¥ ehopshadoop @logicalclocks i LOG [Al_ [I_O[KS

www.hops.io www.logicalclocks.com

We are open source:
https://github.com/logicalclocks/hopsworks
https://github.com/hopshadoop/hops

13
2 Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/. 2018.

13Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso, Gautier Berthou,
Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson, Alex Ormenisan, and
Rasmus Toivonen
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