# Feature Store: the missing data layer in ML pipelines?<sup>1</sup> Hopsworks Hands On - Palo Alto

Kim Hammar

kim@logicalclocks.com

April 23, 2019





<sup>&</sup>lt;sup>1</sup>Kim Hammar and Jim Dowling. Feature Store: the missing data layer in ML pipelines? https://www.logicalclocks.com/feature-store/. 2018.

$$\begin{pmatrix} x_{1,1} & \dots & x_{1,n} \\ \vdots & \dots & \vdots \\ x_{n,1} & \dots & x_{n,n} \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \longrightarrow \varphi(x)$$

2 / 22

<sup>&</sup>lt;sup>2</sup> Jeremy Hermann and Mike Del Balso. Scaling Machine Learning at Uber with Michelangelo. https://eng.uber.com/scaling-michelangelo/, 2018.

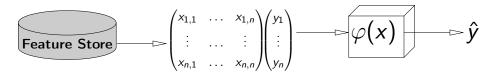
"Data is the hardest part of ML and the most important piece to get right.

Modelers spend most of their time selecting and transforming features at training time and then building the pipelines to deliver those features to production models."

- Uber<sup>2</sup>

Kim Hammar (Logical Clocks) Hopsworks Feature Store April 23, 2019 2 / 22

<sup>&</sup>lt;sup>2</sup>Jeremy Hermann and Mike Del Balso. *Scaling Machine Learning at Uber with Michelangelo*. https://eng.uber.com/scaling-michelangelo/. 2018.



"Data is the hardest part of ML and the most important piece to get right.

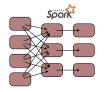
Modelers spend most of their time selecting and transforming features at training time and then building the pipelines to deliver those features to production models."

- Uber<sup>3</sup>

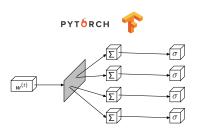
<sup>&</sup>lt;sup>3</sup>Jeremy Hermann and Mike Del Balso. *Scaling Machine Learning at Uber with Michelangelo*. https://eng.uber.com/scaling-michelangelo/. 2018.

# Merging Our Data Intensive and Compute Intensive Workloads

#### Data Intensive



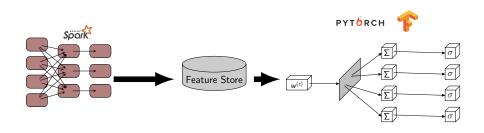
#### Compute Intensive



# Merging Our Data Intensive and Compute Intensive Workloads

#### Data Intensive

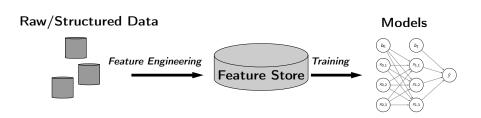
#### Compute Intensive



#### Outline

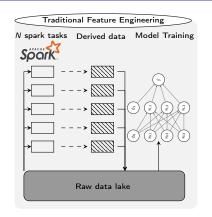
- What is a Feature Store
- Why You Need a Feature Store
- Output Description
  Output Descript
- Oemo

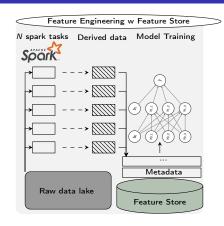
# Solution: Disentangle ML Pipelines with a Feature Store



- A feature store is a central vault for storing documented, curated, and access-controlled features.
- The feature store is the interface between data engineering and data model development

#### Make ML-Features A First-Class Citizen in Your Data Lakes





- Make your features first-class citizens:
  - Document features
  - Version features
  - Invest in a data layer specifically for features (feature store)
  - Make features access-controlled and searchable

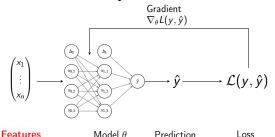
#### What is a Feature?

A feature is a measurable property of some data-sample

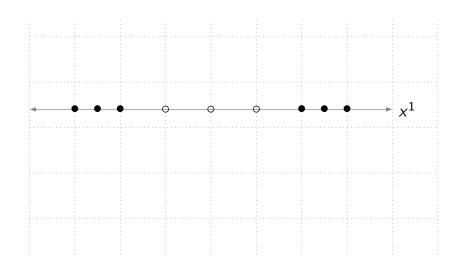
A feature could be..

- An aggregate value (min, max, mean, sum)
- A raw value (a pixel, a word from a piece of text)
- A value from a database table (the age of a customer)
- A derived representation: e.g an embedding or a cluster

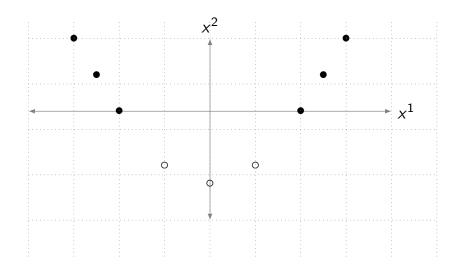
#### Features are the fuel for AI systems:



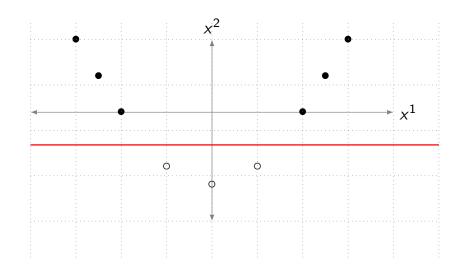
#### Feature Engineering is Crucial for Model Performance

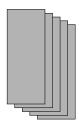


#### Feature Engineering is Crucial for Model Performance

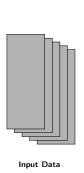


#### Feature Engineering is Crucial for Model Performance

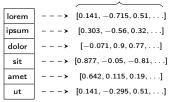




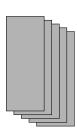
Input Data



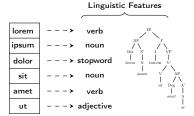
#### Embeddings



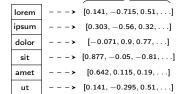
Feature Engineering



Input Data



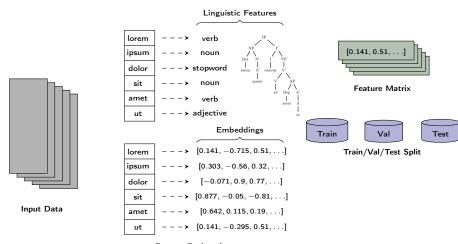




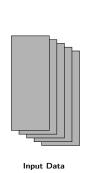
Feature Engineering

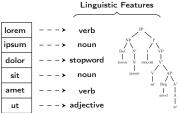


Feature Matrix



Feature Engineering







| lorem | > [0.141, -0.715, 0.51,]          |
|-------|-----------------------------------|
| ipsum | <b>&gt;</b> [0.303, −0.56, 0.32,] |
| dolor | > [-0.071, 0.9, 0.77,]            |
| sit   | > [0.877, -0.05, -0.81,]          |
| amet  | > [0.642, 0.115, 0.19,]           |
| ut    | > [0.141, -0.295, 0.51,]          |

Feature Engineering



Feature Matrix



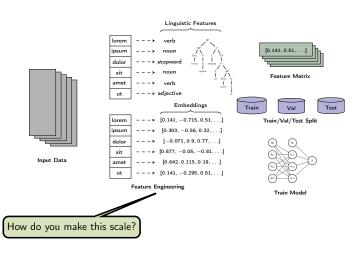


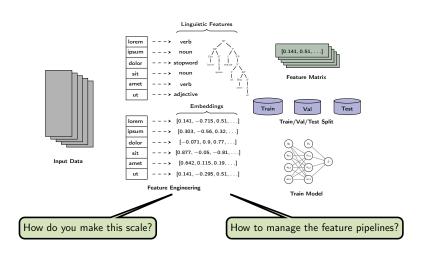


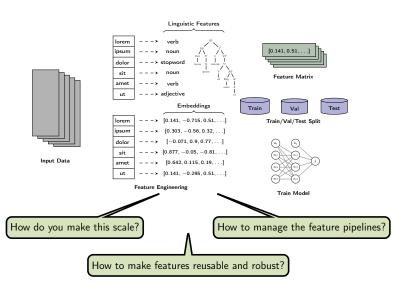
Train/Val/Test Split



Train Model









Feature Engineering is Complex Yet Crucial for Model Performance

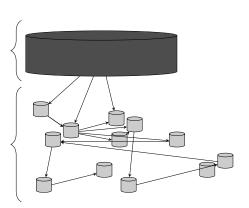
Treat your features accordingly!

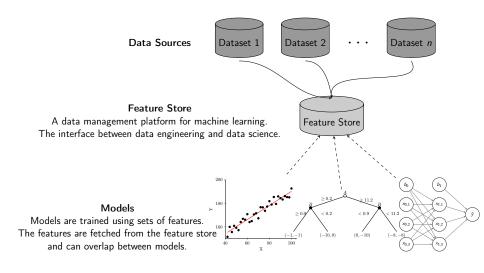


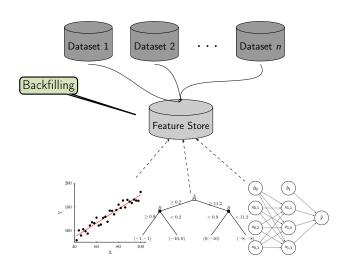
# Feature Pipeline Jungles

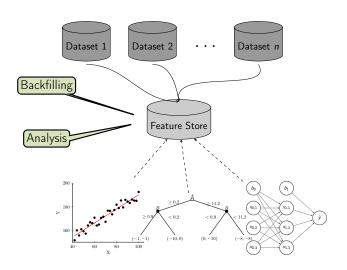
Data Lake (Raw/Structured Data)

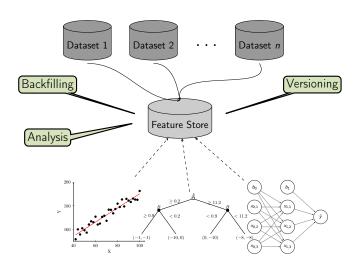
Feature Data (Derived Data)

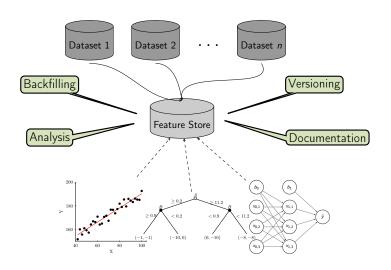












```
from hops import featurestore
features_df = featurestore.get_features(
                 "average_attendance",
                 "average_player_age"
                 1)
featurestore.create_featuregroup(
              f df. "t features".
              description="...". version=2)
d_dir = featurestore.get_training_dataset_path(td_name)
tf_schema = featurestore.get_tf_record_schema(td_name)
```

Read from the feature store

```
from hops import featurestore
features_df = featurestore.get_features(
                 "average_attendance",
                 "average player age"
                 1)
featurestore.create_featuregroup(
              f df. "t features".
              description="...", version=2)
d_dir = featurestore.get_training_dataset_path(td_name)
tf_schema = featurestore.get_tf_record_schema(td_name)
```

```
Read from the feature store
                                from hops import featurestore
                                features_df = featurestore.get_features(
                                                  "average_attendance",
                                                 "average player age"
 Write to the feature store
                                                 1)
                                featurestore.create_featuregroup(
                                              f df. "t features".
                                              description="...", version=2)
                                d_dir = featurestore.get_training_dataset_path(td_name)
                                tf schema = featurestore.get tf record schema(td name)
```

```
Read from the feature store
                                from hops import featurestore
                                features_df = featurestore.get_features(
                                                  "average_attendance",
                                                 "average player age"
 Write to the feature store
                                                 1)
                                featurestore.create_featuregroup(
                                              f df. "t features".
                                              description="...", version=2)
Metadata operations
                                d_dir = featurestore.get_training_dataset_path(td_name)
                                tf schema = featurestore.get tf record schema(td name)
```

#### Existing Feature Stores

- Uber's feature store<sup>4</sup>
- Airbnb's feature store<sup>5</sup>
- Comcast's feature store<sup>6</sup>
- Facebook's feature store<sup>7</sup>
- GO-JEK's feature store<sup>8</sup>
- Twitter's feature store<sup>9</sup>
- Branch International's feature store<sup>10</sup>

#### • Hopsworks' feature store<sup>11</sup> (the only open-source one!)

<sup>4</sup>Li Erran Li et al. "Scaling Machine Learning as a Service". In: Proceedings of The 3rd International Conference on Predictive Applications and APIs. Ed. by Claire Hardgrove et al. Vol. 67. Proceedings of Machine Learning Research. Microsoft NERD, Boston, USA: PMLR, 2017, pp. 14-29. URL: http://proceedings.mlr.press/v67/li17a.html.

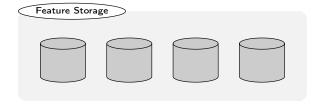
<sup>5</sup> Nikhil Simha and Varant Zanoyan. Zipline: Airbnb's Machine Learning Data Management Platform. https://databricks.com/session/zipline-airbnbs-machine-learning-data-management-platform. 2018.

<sup>6</sup> Nabeel Sarwar. Operationalizing Machine Learning—Managing Provenance from Raw Data to Predictions. https://databricks.com/session/operationalizing-machine-learning-managing-provenance-from-raw-data-topredictions, 2018.

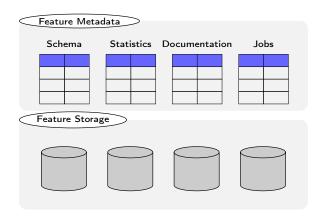
<sup>7</sup>Kim Hazelwood et al. "Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective". In: Feb. 2018, pp. 620-629, DOI: 10.1109/HPCA.2018.00059.

<sup>8</sup>Willem Pienaar. Building a Feature Platform to Scale Machine Learning | DataEngConf BCN '18. https://www.voutube.com/watch?v=0iCXY6VnpCc. 2018.

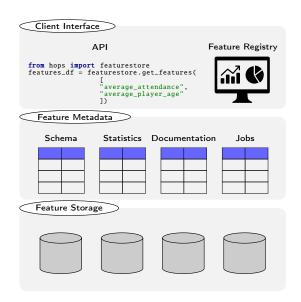
### The Components of a Feature Store

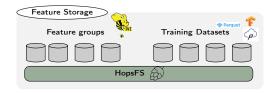


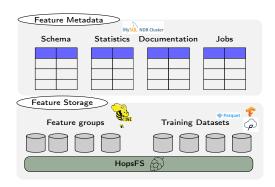
### The Components of a Feature Store

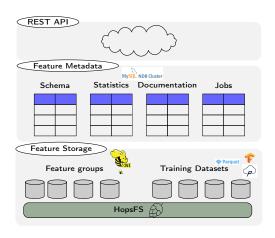


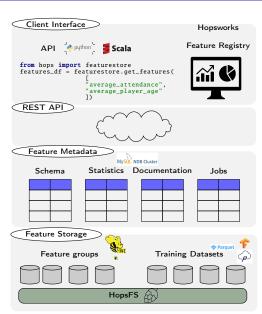
#### The Components of a Feature Store





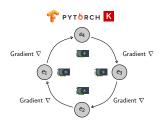




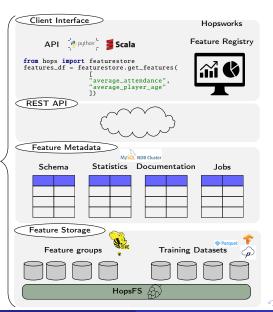


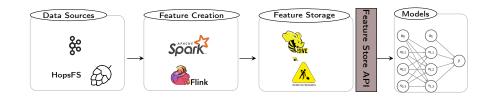


Feature Engineering

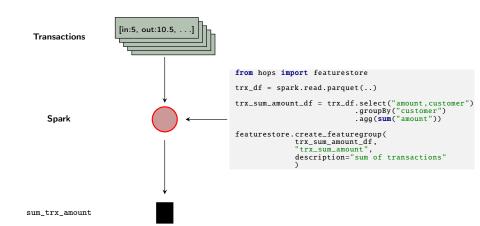


Model Training/Serving

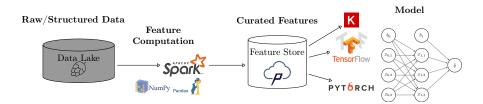




#### Feature Creation Example



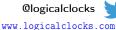
# Demo-Setting



#### Summary

- Machine learning comes with a high technical cost
- Machine learning pipelines needs proper data management
- A feature store is a place to store curated and documented features
- The feature store serves as an interface between feature engineering and model development, it can help disentangle complex ML pipelines
- Hopsworks<sup>12</sup> provides the world's first open-source feature store







We are open source:

https://github.com/logicalclocks/hopsworks https://github.com/hopshadoop/hops

13

<sup>12</sup> Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/. 2018.

<sup>13</sup> Thanks to Logical Clocks Team: Jim Dowling, Seif Haridi, Theo Kakantousis, Fabio Buso, Gautier Berthou, Ermias Gebremeskel, Mahmoud Ismail, Salman Niazi, Antonios Kouzoupis, Robin Andersson, Alex Ormenisan, and Rasmus Toivonen

#### References

- Hopsworks' feature store<sup>14</sup>
- HopsML<sup>15</sup>
- Hopsworks<sup>16</sup>

<sup>&</sup>lt;sup>14</sup>Kim Hammar and Jim Dowling. Feature Store: the missing data layer in ML pipelines? https://www.logicalclocks.com/feature-store/. 2018.

<sup>15</sup> Logical Clocks AB. HopsML: Python-First ML Pipelines. https://hops.readthedocs.io/en/latest/hopsml/hopsML.html. 2018.

<sup>16</sup> Jim Dowling. Introducing Hopsworks. https://www.logicalclocks.com/introducing-hopsworks/ 2018.