Intrusion Prevention through Optimal Stopping Netcon talk

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering KTH Royal Institute of Technology

Feb 7, 2022

Use Case: Intrusion Prevention

A Defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure by monitoring and active defense
- An Attacker seeks to intrude on the infrastructure
 - Has a partial view of the infrastructure
 - Wants to compromise specific components
 - Attacks by reconnaissance, exploitation and pivoting

Use Case & Approach:

- Intrusion Prevention
- System identification
- Reinforcement learning and dynamic programming

Formal Model & Background:

- Background: POMDPs and optimal stopping
- Multiple Stopping Problem POMDP

Structure of π^*

- Structural result: Multi-Threshold policy
- Stopping sets S₁ are connected and nested
- Conditions for Bayesian filter to be monotone in b
- Existence of optimal multi-threshold policy π_I^*

- Numerical evaluation results
- Conclusion & Future work

Use Case & Approach:

- Intrusion Prevention
- System identification
- Reinforcement learning and dynamic programming

Formal Model & Background:

- Background: POMDPs and optimal stopping
- Multiple Stopping Problem POMDP

Structure of π^*

- Structural result: Multi-Threshold policy
- Stopping sets S₁ are connected and nested
- Conditions for Bayesian filter to be monotone in b
- Existence of optimal multi-threshold policy π_I^*

- Numerical evaluation results
- Conclusion & Future work

Use Case & Approach:

- Intrusion Prevention
- System identification
- Reinforcement learning and dynamic programming

Formal Model & Background:

- Background: POMDPs and optimal stopping
- Multiple Stopping Problem POMDP

Structure of π^*

- Structural result: Multi-Threshold policy
- Stopping sets S₁ are connected and nested
- Conditions for Bayesian filter to be monotone in b
- Existence of optimal multi-threshold policy π^{*}_l

- Numerical evaluation results
- Conclusion & Future work

Use Case & Approach:

- Intrusion Prevention
- System identification
- Reinforcement learning and dynamic programming

Formal Model & Background:

- Background: POMDPs and optimal stopping
- Multiple Stopping Problem POMDP

Structure of π^*

- Structural result: Multi-Threshold policy
- Stopping sets S₁ are connected and nested
- Conditions for Bayesian filter to be monotone in b
- Existence of optimal multi-threshold policy π^{*}_l

- Numerical evaluation results
- Conclusion & Future work

- $\blacktriangleright \text{ POMDP: } \langle \mathcal{S}, \mathcal{A}, \mathcal{P}_{s_t, s_{t+1}}^{a_t}, \mathcal{R}_{s_t, s_{t+1}}^{a_t}, \gamma, \rho_1, \mathcal{T}, \mathcal{O}, \mathcal{Z} \rangle$
- ▶ Controlled hidden Markov model, states $s_t \in S$ are hidden
- ▶ Agent observes history $h_t = (\rho_1, a_1, o_1, \dots, a_{t-1}, o_t) \in \mathcal{H}$

s_t is Markov:
$$\mathbb{P}[s_{t+1}|s_t] = \mathbb{P}[s_{t+1}|s_1,...,s_t]$$
⇒ $\pi^*(a_t|h_t) = \pi^*(a_t|\mathbb{P}[s_t|h_t]) = \pi^*(a_t|b_t)$
Optimality (Bellman) Eq:

$$\pi^*(b) \in \underset{a \in \mathcal{A}}{\arg \max} \left[\sum_{s} b(s) \mathcal{R}_s^a + \gamma \sum_{o,s,s'} \mathcal{Z}(o,s',a) b(s) \mathcal{P}_{ss'}^a V^*(b_a^o) \right]$$

$$\begin{split} \mathbb{P}[s_t|h_t] &= \mathbb{P}[s_t|o_t, a_{t-1}, h_{t-1}] \\ &= \frac{\mathbb{P}[o_t|s_t, a_{t-1}, h_{t-1}]\mathbb{P}[s_t|a_{t-1}, h_{t-1}]}{\mathbb{P}[o_t|a_{t-1}, h_{t-1}]} & \text{Bayes} \\ &= \frac{\mathcal{Z}(o_t, s_t, a_{t-1})\sum_{s_{t-1}} \mathcal{P}^{a_{t-1}}_{s_{t-1}s_t} \mathbb{P}[s_{t-1}|h_{t-1}]}{\sum_{s'}\sum_s \mathcal{Z}(o_t, s', a_{t-1})\mathbb{P}[s_{t-1}|h_{t-1}]} & \text{Markov} \end{split}$$

▶ P[s_{t-1}|h_{t-1}] with a_t, o_t is a sufficient statistic for s_t
 ▶ b_t ≜ P[s_{t-1}|h_{t-1}]: belief state at time t
 ▶ b_t computed recursively using the equation above

►
$$s_t$$
 is Markov: $\mathbb{P}[s_{t+1}|s_t] = \mathbb{P}[s_{t+1}|s_1, \dots, s_t]$
► $\Rightarrow \pi^*(a_t|h_t) = \pi^*(a_t|\mathbb{P}[s_t|h_t]) = \pi^*(a_t|b_t)$
► Optimality (Bellman) Eq:

$$\pi^*(b) \in \underset{a \in \mathcal{A}}{\arg \max} \left[\sum_{s} b(s) \mathcal{R}^a_s + \gamma \sum_{o, s, s'} \mathcal{Z}(o, s', a) b(s) \mathcal{P}^a_{ss'} V^*(b^o_a) \right]$$

$$\begin{split} \mathbb{P}[s_t|h_t] &= \mathbb{P}[s_t|o_t, a_{t-1}, h_{t-1}] \\ &= \frac{\mathbb{P}[o_t|s_t, a_{t-1}, h_{t-1}]\mathbb{P}[s_t|a_{t-1}, h_{t-1}]}{\mathbb{P}[o_t|a_{t-1}, h_{t-1}]} \\ &= \frac{\mathcal{Z}(o_t, s_t, a_{t-1})\sum_{s_{t-1}} \mathcal{P}^{a_{t-1}}_{s_{t-1}s_t}\mathbb{P}[s_{t-1}|h_{t-1}]}{\sum_{s'}\sum_s \mathcal{Z}(o_t, s', a_{t-1})\mathbb{P}[s_{t-1}|h_{t-1}]} \\ \end{split}$$
 Markov

 P[s_{t-1}|h_{t-1}] with a_t, o_t is a sufficient statistic for s_t
 b_t ≜ ℙ[s_{t-1}|h_{t-1}]: belief state at time t
 b_t computed recursively using the equation above

$$\begin{split} \mathbb{P}[s_t|h_t] &= \mathbb{P}[s_t|o_t, a_{t-1}, h_{t-1}] \\ &= \frac{\mathbb{P}[o_t|s_t, a_{t-1}, h_{t-1}]\mathbb{P}[s_t|a_{t-1}, h_{t-1}]}{\mathbb{P}[o_t|a_{t-1}, h_{t-1}]} \quad \text{Bayes} \\ &= \frac{\mathcal{Z}(o_t, s_t, a_{t-1})\sum_{s_{t-1}} \mathcal{P}^{a_{t-1}}_{s_{t-1}s_t}\mathbb{P}[s_{t-1}|h_{t-1}]}{\sum_{s'}\sum_s \mathcal{Z}(o_t, s', a_{t-1})\mathbb{P}[s_{t-1}|h_{t-1}]} \quad \text{Markov} \end{split}$$

▶ P[s_{t-1}|h_{t-1}] with a_t, o_t is a sufficient statistic for s_t
 ▶ b_t ≜ P[s_{t-1}|h_{t-1}]: belief state at time t
 ▶ b_t computed recursively using the equation above

 $s_t \text{ is Markov: } \mathbb{P}[s_{t+1}|s_t] = \mathbb{P}[s_{t+1}|s_1, \dots, s_t]$ $\Rightarrow \pi^*(a_t|h_t) = \pi^*(a_t|\mathbb{P}[s_t|h_t]) = \pi^*(a_t|b_t)$

Optimality (Bellman) Eq:

$$\pi^*(b) \in \underset{a \in \mathcal{A}}{\arg \max} \left[\sum_{s} b(s) \mathcal{R}^a_s + \gamma \sum_{o, s, s'} \mathcal{Z}(o, s', a) b(s) \mathcal{P}^a_{ss'} V^*(b^o_a) \right]$$

$$\begin{split} \mathbb{P}[s_t|h_t] &= \mathbb{P}[s_t|o_t, a_{t-1}, h_{t-1}] \\ &= \frac{\mathbb{P}[o_t|s_t, a_{t-1}, h_{t-1}]\mathbb{P}[s_t|a_{t-1}, h_{t-1}]}{\mathbb{P}[o_t|a_{t-1}, h_{t-1}]} \\ &= \frac{\mathcal{Z}(o_t, s_t, a_{t-1})\sum_{s_{t-1}} \mathcal{P}^{a_{t-1}}_{s_{t-1}s_t}\mathbb{P}[s_{t-1}|h_{t-1}]}{\sum_{s'}\sum_s \mathcal{Z}(o_t, s', a_{t-1})\mathbb{P}[s_{t-1}|h_{t-1}]} \quad \text{Markov} \end{split}$$

P[s_{t-1}|h_{t-1}] with a_t, o_t is a sufficient statistic for s_t
 b_t ≜ P[s_{t-1}|h_{t-1}]: belief state at time t
 b_t computed recursively using the equation above

s_t is Markov:
$$\mathbb{P}[s_{t+1}|s_t] = \mathbb{P}[s_{t+1}|s_1, \dots, s_t]$$
 $\implies \pi^*(a_t|h_t) = \pi^*(a_t|\mathbb{P}[s_t|h_t]) = \pi^*(a_t|b_t)$
Optimality (Bellman) Eq:

$$\pi^*(b) \in \underset{a \in \mathcal{A}}{\arg \max} \left[\sum_{s} b(s) \mathcal{R}^a_s + \gamma \sum_{o, s, s'} \mathcal{Z}(o, s', a) b(s) \mathcal{P}^a_{ss'} V^*(b^o_a) \right]$$

$$\mathbb{P}[s_t|h_t] = \mathbb{P}[s_t|o_t, a_{t-1}, h_{t-1}]$$

$$= \frac{\mathbb{P}[o_t|s_t, a_{t-1}, h_{t-1}]\mathbb{P}[s_t|a_{t-1}, h_{t-1}]}{\mathbb{P}[o_t|a_{t-1}, h_{t-1}]} \qquad \text{Bayes}$$

$$= \frac{\mathcal{Z}(o_t, s_t, a_{t-1})\sum_{s_{t-1}} \mathcal{P}^{a_{t-1}}_{s_{t-1}s_t}\mathbb{P}[s_{t-1}|h_{t-1}]}{\sum_{s'}\sum_s \mathcal{Z}(o_t, s', a_{t-1})\mathbb{P}[s_{t-1}|h_{t-1}]} \qquad \text{Markov}$$

 P[s_{t-1}|h_{t-1}] with a_t, o_t is a sufficient statistic for s_t

 b_t ≜ ℙ[s_{t-1}|h_{t-1}]: belief state at time t

 b_t computed recursively using the equation above

▶ $b \in \mathcal{B}$, \mathcal{B} is the unit $(|\mathcal{S}| - 1)$ -simplex

To characterize π*, partition B based on π*(a|b)
 e.g. stopping set S and continuation set C

▶ $b \in \mathcal{B}$, \mathcal{B} is the unit $(|\mathcal{S}| - 1)$ -simplex

To characterize π*, partition B based on π*(a|b)
 e.g. stopping set S and continuation set C

- ▶ $|\mathcal{B}| = \infty$, high-dimensional $(|\mathcal{S}|)$ continuous vector
- ► Infinite set of deterministic policies: $\max_{\pi: \mathcal{B} \to \mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_t]$
- However, only finite set of belief points b ∈ B are "reachable".
 Finite horizon ⇒ finite set of "conditional plans" H → A

- ▶ $|\mathcal{B}| = \infty$, high-dimensional ($|\mathcal{S}|$) continuous vector
- ▶ Infinite set of deterministic policies: $\max_{\pi:\mathcal{B}\to\mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_t]$
- However, only finite set of belief points b ∈ B are "reachable".
 Finite horizon ⇒ finite set of "conditional plans" H → A

- ▶ $|\mathcal{B}| = \infty$, high-dimensional ($|\mathcal{S}|$) continuous vector
- ► Infinite set of deterministic policies: $\max_{\pi: \mathcal{B} \to \mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_t]$
- However, only finite set of belief points $b \in \mathcal{B}$ are "reachable".
- ▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$

- ▶ $|\mathcal{B}| = \infty$, high-dimensional ($|\mathcal{S}|$) continuous vector
- ▶ Infinite set of deterministic policies: $\max_{\pi: \mathcal{B} \to \mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_{t}]$
- However, only finite set of belief points $b \in \mathcal{B}$ are "reachable".
- ▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$
 - Set of pure strategies in an extensive game against nature

- ▶ $|\mathcal{B}| = \infty$, high-dimensional ($|\mathcal{S}|$) continuous vector
- ▶ Infinite set of deterministic policies: $\max_{\pi: \mathcal{B} \to \mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_{t}]$
- However, only finite set of belief points $b \in \mathcal{B}$ are "reachable".
- ▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$
 - Set of pure strategies in an extensive game against nature

- ▶ $|\mathcal{B}| = \infty$, high-dimensional ($|\mathcal{S}|$) continuous vector
- ▶ Infinite set of deterministic policies: $\max_{\pi: \mathcal{B} \to \mathcal{A}} \mathbb{E}_{\pi} [\sum_{t} r_{t}]$
- However, only finite set of belief points $b \in \mathcal{B}$ are "reachable".
- ▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$
 - Set of pure strategies in an extensive game against nature

For each conditional plan $\beta \in \Gamma$:

▶ Define vector $\alpha^{\beta} \in \mathbb{R}^{|S|}$ such that $\alpha_{i}^{\beta} = V^{\beta}(i)$ ▶ $\implies V^{\beta}(b) = b^{T} \alpha^{\beta}$ (linear in *b*).

► Thus, $V^*(b) = \max_{\beta \in \Gamma} b^T \alpha^\beta$ (piece-wise linear and convex¹)

¹Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: Operations Research 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

For each conditional plan β ∈ Γ: Define vector α^β ∈ ℝ^{|S|} such that α^β_i = V^β(i) ⇒ V^β(b) = b^Tα^β (linear in b). Thus, V*(b) = max_{β∈Γ} b^Tα^β (piece-wise linear and convex²)

²Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: *Operations Research* 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

For each conditional plan β ∈ Γ: Define vector α^β ∈ ℝ^{|S|} such that α^β_i = V^β(i) ⇒ V^β(b) = b^Tα^β (linear in b). Thus, V*(b) = max_{β∈Γ} b^Tα^β (piece-wise linear and convex³)

³Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: *Operations Research* 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

For each conditional plan $\beta \in \Gamma$:

• Define vector $\alpha^{\beta} \in \mathbb{R}^{|S|}$ such that $\alpha_{i}^{\beta} = V^{\beta}(i)$

• $\implies V^{\beta}(b) = b^{T} \alpha^{\beta}$ (linear in b).

▶ Thus, $V^*(b) = \max_{\beta \in \Gamma} b^T \alpha^\beta$ (piece-wise linear and convex⁴)

8/29

For each conditional plan $\beta \in \Gamma$:

• Define vector $\alpha^{\beta} \in \mathbb{R}^{|S|}$ such that $\alpha_{i}^{\beta} = V^{\beta}(i)$

• $\implies V^{\beta}(b) = b^{T} \alpha^{\beta}$ (linear in b).

▶ Thus, $V^*(b) = \max_{\beta \in \Gamma} b^T \alpha^\beta$ (piece-wise linear and convex⁵)

Background: Optimal Stopping

History:

- Studied in the 18th century to analyze a gambler's fortune
- Formalized by Abraham Wald in 1947⁶
- Since then it has been generalized and developed by (Chow⁷, Shiryaev & Kolmogorov⁸, Bather⁹, Bertsekas¹⁰, etc.)

⁹ John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA: John Wiley and Sons, Inc., 2000. ISBN: 0471976490.

¹⁰Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

⁶Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

⁷Y. Chow, H. Robbins, and D. Siegmund. "Great expectations: The theory of optimal stopping". In: 1971.

⁸Albert N. Shirayev. *Optimal Stopping Rules*. Reprint of russian edition from 1969. Springer-Verlag Berlin, 2007.

Background: Optimal Stopping

► The General Problem:

- A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
- Two options per t: (i) continue to observe; or (ii) stop
- Find the optimal stopping time τ^* :

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^{\mathsf{C}} + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^{\mathsf{S}} \right]$$
(1)

where $\mathcal{R}^{\textit{S}}_{\textit{ss}'}$ & $\mathcal{R}^{\textit{C}}_{\textit{ss}'}$ are the stop/continue rewards

Solution approaches: the Markovian approach and the martingale approach.

Background: Optimal Stopping

The General Problem:

- A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
- Two options per t: (i) continue to observe; or (ii) stop
- Find the optimal stopping time τ^* :

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^C + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^S \right]$$
(2)

where $\mathcal{R}^{\textit{S}}_{\textit{ss'}}$ & $\mathcal{R}^{\textit{C}}_{\textit{ss'}}$ are the stop/continue rewards

Solution approaches: the Markovian approach and the martingale approach.
The Markovian approach:

- Model the problem as a MDP or POMDP
- A policy π* that satisfies the <u>Bellman-Wald</u> equation is optimal:

$$\pi^*(s) = \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{\mathbb{E}\left[\mathcal{R}_s^S\right]}_{\operatorname{stop}}, \underbrace{\mathbb{E}\left[\mathcal{R}_s^C + \gamma V^*(s')\right]}_{\operatorname{continue}} \right] \quad \forall s \in \mathcal{S}$$

 Solve by backward induction, dynamic programming, or reinforcement learning

► The martingale approach:

- Model the state process as an arbitrary stochastic process
- The reward of the optimal stopping time is given by the smallest supermartingale that stochastically dominates the process, called the Snell envelope [13].

The Markovian approach:

• Assume all rewards are received upon stopping: R_s^{\emptyset}

- ► $V^*(s)$ majorizes R_s^{\emptyset} if $V^*(s) \ge R_s^{\emptyset} \ \forall s \in S$
- ► $V^*(s)$ is excessive if $V^*(s) \ge \sum_{s'} \mathcal{P}_{s's}^{\mathcal{C}} V^*(s') \forall s \in S$
- ► Theorem: V*(s) is the minimal excessive function which majorizes R[∅]_s.

► The martingale approach:

- Model the state process as an arbitrary stochastic process
- The reward of the optimal stopping time is given by the smallest supermartingale that stochastically dominates the process, called the Snell envelope [13].

The Markovian approach:

• Assume all rewards are received upon stopping: R_s^{\emptyset}

- ► $V^*(s)$ majorizes R_s^{\emptyset} if $V^*(s) \ge R_s^{\emptyset} \ \forall s \in S$
- ▶ $V^*(s)$ is excessive if $V^*(s) \ge \sum_{s'} \mathcal{P}_{s's}^C V^*(s') \forall s \in S$

▶ $V^*(s)$ is the minimal excessive function which majorizes R_s^{\emptyset} .

The Markovian approach:

Assume all rewards are received upon stopping: R_s^{\emptyset}

- $V^*(s)$ majorizes R_s^{\emptyset} if $V^*(s) \ge R_s^{\emptyset} \ \forall s \in S$
- $V^*(s)$ is excessive if $V^*(s) \ge \sum_{s'} \mathcal{P}_{s's}^C V^*(s') \ \forall s \in S$
- $V^*(s)$ is the minimal excessive function which majorizes R_s^{\emptyset} .

The martingale approach:

- Model the state process as an arbitrary stochastic process
- The reward of the optimal stopping time is given by the smallest supermartingale that stochastically dominates the process, called the Snell envelope¹¹.

¹¹ J. L. Snell. "Applications of martingale system theorems". In: Transactions of the American Mathematical Society 73 (1952), pp. 293–312.

Applications & Use Cases:

- Hypothesis testing¹²
- Change detection¹³,
- Selling decisions¹⁴,
- Queue management¹⁵,
- Industrial control¹⁶,
- Advertisement scheduling¹⁷, etc.

¹²Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

¹³Alexander G. Tartakovsky et al. "Detection of intrusions in information systems by sequential change-point methods". In: Statistical Methodology 3.3 (2006). ISSN: 1572-3127. DOI: https://doi.org/10.1016/j.stamet.2005.05.003. URL: https://www.sciencedirect.com/science/article/pii/S1572312705000493.

¹⁴ Jacques du Toit and Goran Peskir. "Selling a stock at the ultimate maximum". In: The Annals of Applied Probability 19.3 (2009). ISSN: 1050-5164. DOI: 10.1214/08-aap566. URL: http://dx.doi.org/10.1214/08-AAP566.

¹⁵Arghyadip Roy et al. "Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision Processes". In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

¹⁶Maben Rabi and Karl H. Johansson. "Event-Triggered Strategies for Industrial Control over Wireless Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui, Hawaii, USA: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008. ISBN: 9789639799363.

¹⁷Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. "Multiple stopping time POMDPs: Structural results & application in interactive advertising on social media". In: *Automatica* 95 (2018), pp. 385–398. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2018.06.013. URL: https://www.sciencedirect.com/science/article/pii/S0005109818303054.

Applications & Use Cases:

- Hypothesis testing¹⁸
- Change detection¹⁹,
- Selling decisions²⁰,
- Queue management²¹,
- Industrial control²²,
- Advertisement scheduling,
- ▶ Intrusion prevention²³ etc.

¹⁹Alexander G. Tartakovsky et al. "Detection of intrusions in information systems by sequential change-point methods". In: *Statistical Methodology* 3.3 (2006). ISSN: 1572-3127. DOI: https://doi.org/10.1016/j.stamet.2005.05.003. URL:

https://www.sciencedirect.com/science/article/pii/S1572312705000493.

²⁰ Jacques du Toit and Goran Peskir. "Selling a stock at the ultimate maximum". In: The Annals of Applied Probability 19.3 (2009). ISSN: 1050-5164. DOI: 10.1214/08-aap566. URL: http://dx.doi.org/10.1214/08-AAP566.

²¹Arghyadip Roy et al. "Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision Processes". In: *CoRR* (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

²²Maben Rabi and Karl H. Johansson. "Event-Triggered Strategies for Industrial Control over Wireless Networks". In: Proceedings of the 4th Annual International Conference on Wireless Internet. WICON '08. Maui, Hawaii, USA: ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2008. ISBN: 9789639799363.

²³Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

¹⁸Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- ▶ The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- ▶ We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- ▶ We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- ▶ We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- ▶ We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- ► The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

States:

• Intrusion state $s_t \in \{0, 1\}$, terminal \emptyset .

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$

Actions:

▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:

Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)

Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts (Δx, Δy), Login attempts Δz, stops remaining *l*_t ∈ {1,.., *L*}, *f*_{XYZ}(Δx, Δy, Δz|s_t)

Actions:

▶ "Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$

Actions:

▶ "Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - ▶ Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon

$$\max \mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\theta}$$

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$
- Actions:
 - ▶ "Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal \emptyset .

Observations:

Severe/Warning IDS Alerts (Δx, Δy), Login attempts Δz, stops remaining *I*_t ∈ {1,.., *L*}, *f*_{XYZ}(Δx, Δy, Δz|s_t)

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

• Intrusion state $s_t \in \{0,1\}$, terminal \emptyset

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$ Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t)$

We analyze the structure of π^* using POMDP & stopping theory

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

Outline

Use Case & Approach:

- Intrusion Prevention
- System identification
- Reinforcement learning and dynamic programming

Formal Model & Background:

- Background: POMDPs and optimal stopping
- Multiple Stopping Problem POMDP

Structure of π^*

- Structural result: Multi-Threshold policy
- Stopping sets S₁ are connected and nested
- Conditions for Bayesian filter to be monotone in b
- Existence of optimal multi-threshold policy π^{*}_l

Conclusion

- Numerical evaluation results
- Conclusion & Future work

Theorem

Given the intrusion prevention POMDP, the following holds:

- 1. $\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$ for $l = 2, \ldots L$.
- 2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal policy of the form:

$$\pi_L^*(b(1)) = S \iff b(1) \ge \alpha^* \tag{3}$$

3. If $L \ge 1$ and f_{XYZ} is totally positive of order 2 (TP2), there exists L optimal thresholds $\alpha_l^* \in [0, 1]$ and an optimal policy of the form:

 $\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, \qquad I = 1, \dots, L \quad (4)$

where α_l^* is decreasing in *l*.

Theorem

Given the intrusion prevention POMDP, the following holds:

1.
$$\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$$
 for $l = 2, \ldots L$.

2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal policy of the form:

$$\pi_L^*(b(1)) = S \iff b(1) \ge \alpha^* \tag{5}$$

3. If $L \ge 1$ and f_{XYZ} is totally positive of order 2 (TP2), there exists L optimal thresholds $\alpha_l^* \in [0, 1]$ and an optimal policy of the form:

 $\pi_l^*(b(1)) = S \iff b(1) \ge \alpha_l^*, \qquad l = 1, \dots, L \quad (6)$

where α_l^* is decreasing in *l*.

Theorem

Given the intrusion prevention POMDP, the following holds:

- 1. $\mathscr{S}_{I-1} \subseteq \mathscr{S}_I$ for $I = 2, \ldots L$.
- 2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal policy of the form:

$$\pi_{L}^{*}(b(1)) = S \iff b(1) \ge \alpha^{*}$$
(7)

3. If $L \ge 1$ and f_{XYZ} is totally positive of order 2 (TP2), there exists L optimal thresholds $\alpha_l^* \in [0, 1]$ and an optimal policy of the form:

 $\pi_l^*(b(1)) = S \iff b(1) \ge \alpha_l^*, \qquad l = 1, \dots, L \quad (8)$

where α_1^* is decreasing in 1.

Theorem

Given the intrusion prevention POMDP, the following holds:

- 1. $\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$ for $l = 2, \ldots L$.
- 2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal policy of the form:

$$\pi_{L}^{*}(b(1)) = S \iff b(1) \ge \alpha^{*}$$
(9)

3. If $L \ge 1$ and f_{XYZ} is totally positive of order 2 (TP2), there exists L optimal thresholds $\alpha_l^* \in [0, 1]$ and an optimal policy of the form:

$$\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, \qquad I = 1, \dots, L \qquad (10)$$

where α_{l}^{*} is decreasing in I.

Proofs: \mathscr{S}_1 is convex²⁴

𝒴₁ is convex if:
for any two belief states b₁, b₂ ∈ 𝒴₁
any convex combination of b₁, b₂ is also in 𝒴₁
i.e. b₁, b₂ ∈ 𝒴₁ ⇒ λb₁ + (1 − λ)b₂ ∈ 𝒴₁ for λ ∈ [0, 1].
Since V*(b) is convex:
V*(λb₁ + (1 − λ)b₂) ≤ λV*(b₁) + (1 − λ)V(b₂)

Since
$$b_1, b_2 \in \mathscr{S}_1$$
:
 $V^*(b_1) = Q^*(b_1, S)$
 $S = \text{stop}$
 $V^*(b_2) = Q^*(b_2, S)$
 $S = \text{stop}$

²⁴Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex²⁵

\blacktriangleright \mathscr{S}_1 is convex if:

- for any two belief states $b_1, b_2 \in \mathscr{S}_1$
- \blacktriangleright any convex combination of b_1, b_2 is also in \mathscr{S}_1
- i.e. $b_1, b_2 \in \mathscr{S}_1 \implies \lambda b_1 + (1 \lambda)b_2 \in \mathscr{S}_1$ for $\lambda \in [0, 1]$.

$$V^*(\lambda b_1+(1-\lambda)b_2)\leq \lambda V^*(b_1)+(1-\lambda)V(b_2)$$

Since
$$b_1, b_2 \in \mathscr{S}_1$$
:
 $V^*(b_1) = Q^*(b_1, S)$ S=stop
 $V^*(b_2) = Q^*(b_2, S)$ S=stop

²⁵Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex²⁶

 \blacktriangleright \mathscr{S}_1 is convex if:

• for any two belief states $b_1, b_2 \in \mathscr{S}_1$

- \blacktriangleright any convex combination of b_1, b_2 is also in \mathscr{S}_1
- i.e. $b_1, b_2 \in \mathscr{S}_1 \implies \lambda b_1 + (1 \lambda)b_2 \in \mathscr{S}_1$ for $\lambda \in [0, 1]$.

Since V*(b) is convex:

$$V^*(\lambda b_1+(1-\lambda)b_2)\leq \lambda V^*(b_1)+(1-\lambda)V(b_2)$$

Since
$$b_1, b_2 \in \mathscr{S}_1$$
:

$$V^*(b_1) = Q^*(b_1, S)$$
 S=stop
 $V^*(b_2) = Q^*(b_2, S)$ S=stop

²⁶Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex²⁷

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S) \end{aligned}$$

²⁷Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex²⁸

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$: $V^*(\lambda b_1(1) + (1 - \lambda)b_2(1)) \le \lambda V^*(b_1(1)) + (1 - \lambda)V^*(b_2(1))$ $= \lambda Q^*(b_1, S) + (1 - \lambda)Q^*(b_2, S)$ $= \lambda \mathcal{R}_{b_1}^{\emptyset} + (1 - \lambda)\mathcal{R}_{b_2}^{\emptyset}$ $= \sum_s (\lambda b_1(s) + (1 - \lambda)b_2(s))\mathcal{R}_s^{\emptyset}$

²⁸Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex²⁹

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$\begin{split} V^*(\lambda b_1(1) + (1-\lambda)b_2(1)) &\leq \lambda V^*(b_1(1)) + (1-\lambda)V^*(b_2(1)) \\ &= \lambda Q^*(b_1,S) + (1-\lambda)Q^*(b_2,S) \\ &= \lambda \mathcal{R}^{\emptyset}_{b_1} + (1-\lambda)\mathcal{R}^{\emptyset}_{b_2} \\ &= \sum_s (\lambda b_1(s) + (1-\lambda)b_2(s))\mathcal{R}^{\emptyset}_s \\ &= Q^*(\lambda b_1 + (1-\lambda)b_2,S) \end{split}$$

²⁹Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.
Proofs: \mathscr{S}_1 is convex³⁰

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S)\ &=\lambda \mathcal{R}^{\emptyset}_{b_1}+(1-\lambda)\mathcal{R}^{\emptyset}_{b_2}\ &=\sum_s(\lambda b_1(s)+(1-\lambda)b_2(s))\mathcal{R}^{\emptyset}_s\ &=Q^*(\lambda b_1+(1-\lambda)b_2,S)\ &\leq V^*(\lambda b_1(1)+(1-\lambda)b_2(1)) \end{aligned}$$

the last inequality is because V^* is optimal. The second-to-last is because there is just a single stop.

³⁰Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex³¹

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S)\ &=Q^*(\lambda b_1+(1-\lambda)b_2,S)\ &\leq V^*(\lambda b_1(1)+(1-\lambda)b_2(1)) \end{aligned}$$

the last inequality is because V^* is optimal. The second-to-last is because there is just a single stop. Hence:

 $Q^*(\lambda b_1 + (1 - \lambda)b_2, S) = V^*(\lambda b_1(1) + (1 - \lambda)b_2(1))$

 $b_1, b_2 \in \mathscr{S}_1 \implies (\lambda b_1 + (1 - \lambda)) \in \mathscr{S}_1$. Therefore \mathscr{S}_1 is convex.

³¹Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex³²

³²Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: Single-threshold policy is optimal if $L = 1^{33}$

- ▶ In our case, $\mathcal{B} = [0, 1]$. We know \mathscr{S}_1 is a convex subset of \mathcal{B} .
- Consequence, $\mathscr{S}_1 = [\alpha^*, \beta^*]$. We show that $\beta^* = 1$.
- If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b_{C}^{o}(1))}_{a=C} \right]$$
$$= \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e} \ \pi^{*}(1) = \text{Stop}$$
$$\text{Hence } 1 \in \mathscr{S}_{1}. \text{ It follows that } \mathscr{S}_{1} = [\alpha^{*}, 1] \text{ and:}$$
$$\pi^{*}(b(1)) = \int S \quad \text{if } b(1) \ge \alpha^{*}$$

³³Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). https://arxiv.org/pdf/2106.07160.pdf. Izmir, Turkey, 2021.

Proofs: Single-threshold policy is optimal if $L = 1^{34}$

- In our case, B = [0, 1]. We know S₁ is a convex subset of B.
 Consequence, S₁ = [α^{*}, β^{*}]. We show that β^{*} = 1.
- If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b^{o}_{C}(1))}_{a=C} \right]$$
$$= \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e} \ \pi^{*}(1) = \text{Stop}$$
$$\text{Hence} \ 1 \in \mathscr{S}_{1}. \ \text{It follows that} \ \mathscr{S}_{1} = [\alpha^{*}, 1] \text{ and:}$$
$$\pi^{*}(b(1)) = \begin{cases} S & \text{if } b(1) \ge \alpha^{*} \\ C & \text{otherwise} \end{cases}$$

³⁴Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). https://arxiv.org/pdf/2106.07160.pdf. lzmir, Turkey, 2021.

Proofs: Single-threshold policy is optimal if $L = 1^{35}$

- ▶ In our case, $\mathcal{B} = [0, 1]$. We know \mathcal{S}_1 is a convex subset of \mathcal{B} .
- Consequence, $\mathscr{S}_1 = [\alpha^*, \beta^*]$. We show that $\beta^* = 1$.
- If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b^{o}_{C}(1))}_{a=C} \right]$$
$$= \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e } \pi^{*}(1) = \text{Stop}$$

• Hence $1 \in \mathscr{S}_1$. It follows that $\mathscr{S}_1 = [\alpha^*, 1]$ and:

$$\pi^*(b(1)) = egin{cases} {\sf S} & ext{if } b(1) \geq lpha^* \ {\sf C} & ext{otherwise} \end{cases}$$

³⁵Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). https://arxiv.org/pdf/2106.07160.pdf. lzmir, Turkey, 2021. Proofs: Single-threshold policy is optimal if L = 1

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{36}$

If b(1) ∈ 𝒴_{l−1}, we use the Bellman eq. to obtain:

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} \geq \sum_{o} \mathbb{P}^{o}_{b(1)} \Big(V^{*}_{l-1}(b^{o}(1)) - V^{*}_{l-2}(b^{o}(1)) \Big)$$

We show that LHS is non-decreasing in / and RHS is non-increasing in /.

We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define $W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$

³⁶T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{37}$

▶ If $b(1) \in \mathscr{S}_{l-1}$, we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$

We show that LHS is non-decreasing in / and RHS is non-increasing in /.

► LHS is non-decreasing by definition of reward function.

We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define
$$W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$$

³⁷T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{38}$

▶ If $b(1) \in \mathscr{S}_{l-1}$, we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$

We show that LHS is non-decreasing in / and RHS is non-increasing in /.

- ▶ LHS is non-decreasing by definition of reward function.
- We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define $W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$

³⁸ T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{39}$

If b(1) ∈ 𝒴_{l-1}, we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$

- We show that LHS is non-decreasing in / and RHS is non-increasing in /.
- ▶ LHS is non-decreasing by definition of reward function.
- We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define $W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$

³⁹ T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{40}$

Proof.
$$W_{l}^{0}(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_{l}^{k-1}(b(1)) \ge 0.$

⁴⁰T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{41}$

Proof. $W_l^0(b(1)) = 0 \ \forall l.$ Assume $W_{l-1}^{k-1}(b(1)) - W_l^{k-1}(b(1)) \ge 0.$ $W_{l-1}^k(b(1)) - W_l^k(b(1)) = 2V_{l-1}^k - V_{l-2}^k - V_l^k$

⁴¹T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}^{42}$

Proof.

$$W_{l}^{0}(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_{l}^{k-1}(b(1)) \geq 0.$

$$\begin{split} & \mathcal{W}_{l-1}^{k}(b(1)) - \mathcal{W}_{l}^{k}(b(1)) = 2V_{l-1}^{k} - V_{l-2}^{k} - V_{l}^{k} = 2\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} - \mathcal{R}_{b(1)}^{a_{l-1}^{k}} \\ &+ \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(2V_{l-1-a_{l-1}^{k}}^{k-1}(b(1)) - V_{l-a_{l}^{k}}^{k-1}(b(1)) - V_{l-2-a_{l-2}^{k}}^{k-1}(b(1)) \Big) \end{split}$$

Want to show that the above is non-negative. This depends on $a_l^k, a_{l-1}^k, a_{l-2}^k$.

⁴²T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}^{43}$

Proof.

$$W_l^0(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_l^{k-1}(b(1)) \ge 0.$

$$\begin{split} & \mathcal{W}_{l-1}^{k}(b(1)) - \mathcal{W}_{l}^{k}(b(1)) = 2V_{l-1}^{k} - V_{l-2}^{k} - V_{l}^{k} = 2\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} - \mathcal{R}_{b(1)}^{a_{l-1}^{k}} \\ &+ \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(2V_{l-1-a_{l-1}^{k}}^{k-1}(b(1)) - V_{l-a_{l}^{k}}^{k-1}(b(1)) - V_{l-2-a_{l-2}^{k}}^{k-1}(b(1)) \Big) \end{split}$$

Want to show that the above is non-negative. This depends on $a_l^k, a_{l-1}^k, a_{l-2}^k$.

There are four cases to consider:

1.
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$$

2. $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$
3. $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$
4. $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{44}$

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$, then: $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)))$

which is non-negative by the induction hypothesis.

⁴⁴T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{45}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)))$

which is non-negative by the induction hypothesis.

If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then:

 $W_{l}^{k}(b(1)) - W_{l-1}^{k}(b(1)) = \mathcal{R}_{b(1)}^{C} - \mathcal{R}_{b(1)}^{S} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$

⁴⁵T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{46}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)))$

which is non-negative by the induction hypothesis.

If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l}^{k}(b(1)) - W_{l-1}^{k}(b(1)) = \mathcal{R}_{b(1)}^{\mathcal{C}} - \mathcal{R}_{b(1)}^{\mathcal{S}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$

Bellman eq. implies, if $b(1) \in \mathscr{C}_{l-1}$, then:

$$\mathcal{R}_{b(1)}^{\mathsf{C}} - \mathcal{R}_{b(1)}^{\mathsf{S}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-1}^{k-1}(b^{o}(1)) \Big) \geq 0$$

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{47}$

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then: $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$

⁴⁷T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{48}$

Proof.
f
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$
Bellman eq. implies, if $b(1) \in \mathscr{S}_{l-1}^{k}$, then:
 $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1))) \ge 0$

⁴⁸T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{49}$

From
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(W_{l-1}^{k-1}(b^{o}(1)) \right)$

Bellman eq. implies, if $b(1) \in \mathscr{S}_{l-1}^k$, then:

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} - \sum_{o \in \mathcal{O}} \mathbb{P}^{o}_{b(1)} \Big(W^{k-1}_{l-1}(b^{o}(1)) \Big) \geq 0$$

If $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then:

 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-1}^{k-1}(b^{o}(1)) - W_{l}^{k-1}(b^{o}(1)) \Big)$

which is non-negative by the induction hypothesis.

⁴⁹T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{50}$

Hence, we have shown that W_l^k is non-increasing in *l*.

It follows that $b(1) \in \mathscr{S}_{l-1} \implies b(1) \in \mathscr{S}_l$.

⁵⁰T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{51}$

 $\mathscr{S}_1 \subseteq \mathscr{S}_2$ still allows:

⁵¹T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Necessary Condition, Total Positivity of Order 2⁵²

A row-stochastic matrix is totally positive of order 2 (TP2) if:

- The rows of the matrix are stochastically monotone
- Equivalently, all second-order minors are non-negative.

Example:

$$A = \begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{bmatrix}$$

There are $\binom{3}{2}^2$ second-order minors:

$$det \begin{bmatrix} 0.3 & 0.5 \\ 0.2 & 0.4 \end{bmatrix} = 0.02, \quad det \begin{bmatrix} 0.2 & 0.4 \\ 0.1 & 0.2 \end{bmatrix} = 0, \dots etc. \quad (12)$$

Since all minors are non-negative, the matrix is TP2

⁵²Samuel Karlin. "Total positivity, absorption probabilities and applications". In: *Transactions of the American Mathematical Society* 111 (1964).

Proofs: Necessary Condition, Total Positivity of Order 253

A row-stochastic matrix is totally positive of order 2 (TP2) if:
 The rows of the matrix are stochastically monotone
 Equivalently, all second-order minors are non-negative.

Example:

$$A = \begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{bmatrix}$$
(13)

There are $\binom{3}{2}^2$ second-order minors:

$$det \begin{bmatrix} 0.3 & 0.5 \\ 0.2 & 0.4 \end{bmatrix} = 0.02, \quad det \begin{bmatrix} 0.2 & 0.4 \\ 0.1 & 0.2 \end{bmatrix} = 0, \dots etc. \quad (14)$$

Since all minors are non-negative, the matrix is TP2

⁵³Samuel Karlin. "Total positivity, absorption probabilities and applications". In: *Transactions of the American Mathematical Society* 111 (1964).

Proofs: Monotone belief update⁵⁵

Theorem (Monotone belief update)

Given two beliefs $b_1(1) \ge b_2(1)$, if the transition probabilities and the observation probabilities are TP2, then $b_{a,1}^o(1) \ge b_{a,2}^o(1)$, where $b_{a,1}^o(1)$ and $b_{a,2}^o(1)$ denote the beliefs updated with the Bayesian filter after taking action $a \in A$ and observing $o \in O$.

See Theorem 10.3.1 and proof on pp 225,238 in⁵⁴

⁵⁴Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: Connected stopping sets \mathscr{S}_{l}^{56}

▶ \mathscr{S}_l is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$ ▶ If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1)) \Big) \ge 0$$

- The inequality above should also hold for any $b'(1) \ge b(1)$
- Transition probabilities are TP2 by definition
- ▶ We assume observation probabilities are TP2
- It follows that the belief updates are monotone
- ▶ Hence, it is sufficient to show that:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{*}(b(1)) - V_{l}^{*}(b(1))$$

is weakly increasing in b(1).

 $^{^{56}{\}rm Kim}$ Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{57}

▶ \mathscr{S}_l is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$ ▶ If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} (V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1))) \ge 0$$

The inequality above should also hold for any b'(1) ≥ b(1)
Transition probabilities are TP2 by definition
We assume observation probabilities are TP2
It follows that the belief updates are monotone

► Hence, it is sufficient to show that:

 $\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} + V^{*}_{l-1}(b(1)) - V^{*}_{l}(b(1))$

is weakly increasing in b(1).

 $^{^{57}{\}rm Kim}$ Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{58}

▶ \mathscr{S}_l is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$ ▶ If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} (V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1))) \ge 0$$

The inequality above should also hold for any b'(1) ≥ b(1)
Transition probabilities are TP2 by definition
We assume observation probabilities are TP2
It follows that the belief updates are monotone

► Hence, it is sufficient to show that:

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} + V^{*}_{l-1}(b(1)) - V^{*}_{l}(b(1))$$

is weakly increasing in b(1).

 $^{^{58}{\}rm Kim}$ Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{59}

▶ \mathscr{S}_l is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$ ▶ If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1)) \right) \geq 0$$

• The inequality above should also hold for any $b'(1) \ge b(1)$

- Transition probabilities are TP2 by definition
- We assume observation probabilities are TP2
- It follows that the belief updates are monotone

Hence, it is sufficient to show that:

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} + V^{*}_{l-1}(b(1)) - V^{*}_{l}(b(1))$$

is weakly increasing in b(1).

 $^{^{59}{\}rm Kim}$ Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{60}

▶ \mathscr{S}_l is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$ ▶ If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1)) \right) \geq 0$$

- The inequality above should also hold for any $b'(1) \ge b(1)$
- Transition probabilities are TP2 by definition
- ▶ We assume observation probabilities are TP2
- It follows that the belief updates are monotone

Hence, it is sufficient to show that:

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} + V^{*}_{l-1}(b(1)) - V^{*}_{l}(b(1))$$

is weakly increasing in b(1).

⁶⁰Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{61}

Assume
$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$$
 is weakly increasing in $b(1)$.

$$\begin{aligned} &\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ &\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

⁶¹Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{62}

Assume
$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$$
 is weakly increasing in $b(1)$.

$$\begin{aligned} \mathcal{R}_{b(1)}^{S} &- \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ \mathcal{R}_{b(1)}^{a_{l-1}^{k}} &- \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

Want to show that the above is weakly-increasing in b(1). This depends on a_l^k and a_{l-1}^k .

⁶²Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{63}

Assume $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$ is weakly increasing in b(1).

$$\begin{aligned} \mathcal{R}_{b(1)}^{S} &- \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ \mathcal{R}_{b(1)}^{a_{l-1}^{k}} &- \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

Want to show that the above is weakly-increasing in b(1). This depends on a_l^k and a_{l-1}^k .

There are three cases to consider:

1.
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k}$$

2. $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$
3. $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$

⁶³Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{64}

Proof.

If $b(1) \in \mathscr{S}_{l} \cap \mathscr{S}_{l-1}$, then:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \\\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-2}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right)$$

which is weakly increasing in b(1) by the induction hypothesis.

⁶⁴Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Connected stopping sets \mathscr{S}_{l}^{65}

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k}$, then: $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) =$ $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-2}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right)$

which is weakly increasing in b(1) by the induction hypothesis.

If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$, then: $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right) = 0$

which is trivially weakly increasing in b(1).

⁶⁵Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.
Proofs: Connected stopping sets \mathscr{S}_{l}^{66}

Proof.

If $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$, then:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \\\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{k-1}(b^{o}(1)) - V_{l}^{k-1}(b^{o}(1)) \right)$$

which is weakly increasing in b(1) by the induction hypothesis.

Hence, if $b(1) \in \mathscr{S}_l$ and $b'(1) \ge b(1)$ then $b'(1) \in \mathscr{S}_l$. Therefore, \mathscr{S}_l is connected.

⁶⁶Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Proofs: Optimal multi-threshold policy π_l^{*67}

We have shown that:

- $\blacktriangleright \ \mathscr{S}_1 = [\alpha_1^*, 1]$
- $\blacktriangleright \ \mathscr{S}_{l} \subseteq \mathscr{S}_{l+1}$
- \mathscr{S}_l is connected (convex) for $l = 1, \ldots, L$

It follows that, $\mathscr{S}_l = [\alpha_l^*, 1]$ and $\alpha_1^* \ge \alpha_2^* \ge \ldots \ge \alpha_L^*$.

⁶⁷Kim Hammar and Rolf Stadler. "Intrusion Prevention through Optimal Stopping". In: (). 2021, https://arxiv.org/abs/2111.00289. arXiv: 2111.00289.

Conclusions & Future Work

Conclusions:

We develop a method to automatically learn security policies

 (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement learning and (5) domain randomization and generalization.

We apply the method to an intrusion prevention use case

- We formulate intrusion prevention as a multiple stopping problem
 - We present a POMDP model of the use case
 - We apply the stopping theory to establish structural results of the optimal policy
 - We show numerical results in realistic emulation environment (not included in this presentation)

Our research plans:

Extending the model

- Active attacker: Partially Observed Stochastic Game, Equilibrium analysis
- Less restrictions on defender

Scaling up the emulation system:

- More realistic traffic emulation
- Non-static infrastructures