Intrusion Response through Optimal Stopping New York University - Invited Talk

Kim Hammar

Use Case: Intrusion Response

A Defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure by monitoring and active defense
- Has partial observability
- An Attacker seeks to intrude on the infrastructure
 - Has a partial view of the infrastructure
 - Wants to compromise specific components
 - Attacks by reconnaissance, exploitation and pivoting

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- ► The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- ► The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?

Formulating Network Intrusion as a Stopping Problem

- The system evolves in discrete time-steps.
- ▶ The attacker observes the infrastructure (IDS, log files, etc.).
- The first stop action decides when to intrude.
- The attacker can make 2 stops.
- The second stop action terminates the intrusion.
- Based on the observations & the defender's belief, when is it optimal to stop?

Formulating Network Intrusion as a Stopping Problem

- The system evolves in discrete time-steps.
- The attacker observes the infrastructure (IDS, log files, etc.).
- The first stop action decides when to intrude.
- ► The attacker can make 2 stops.
- The second stop action terminates the intrusion.

Based on the observations & the defender's belief, when is it optimal to stop?

Formulating Network Intrusion as a Stopping Problem

- The system evolves in discrete time-steps.
- The attacker observes the infrastructure (IDS, log files, etc.).
- The first stop action decides when to intrude.
- ► The attacker can make 2 stops.
- The second stop action terminates the intrusion.
- Based on the observations & the defender's belief, when is it optimal to stop?

A Dynkin Game Between the Defender and the Attacker¹

- We formalize the Dynkin game as a zero-sum partially observed one-sided stochastic game.
- The defender is the maximizing player
- The attacker is the minimizing player

¹E.B Dynkin. "A game-theoretic version of an optimal stopping problem". In: *Dokl. Akad. Nauk SSSR* 385 (1969), pp. 16–19.

- Use Case & Approach
 - Use case: Intrusion response
 - Approach: Optimal stopping
- Theoretical Background & Formal Model
 - Optimal stopping problem definition
 - Formulating the Dynkin game as a one-sided POSG
- **Structure of** π^*
 - Stopping sets \mathscr{S}_1 are connected and nested, \mathscr{S}_1 is convex.
 - Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.
- Efficient Algorithms for Learning π*
 T-SPSA: A stochastic approximation algorithm to learn π*
 - T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

Stopping sets \mathcal{S}_1 are connected and nested, \mathcal{S}_1 is convex.

Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

Efficient Algorithms for Learning π^*

• T-SPSA: A stochastic approximation algorithm to learn π^*

• T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Optimal Stopping: A Brief History

History:

- Studied in the 18th century to analyze a gambler's fortune
- Formalized by Abraham Wald in 1947²
- Since then it has been generalized and developed by (Chow³, Shiryaev & Kolmogorov⁴, Bather⁵, Bertsekas⁶, etc.)

⁵John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA: John Wiley and Sons, Inc., 2000. ISBN: 0471976490.

⁶Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

²Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

³Y. Chow, H. Robbins, and D. Siegmund. "Great expectations: The theory of optimal stopping". In: 1971.

⁴Albert N. Shirayev. *Optimal Stopping Rules*. Reprint of russian edition from 1969. Springer-Verlag Berlin, 2007.

The Optimal Stopping Problem

- The General Problem:
 - A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
 - Two options per t: (i) continue to observe; or (ii) stop
 - Find the optimal stopping time τ*:

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^{\mathsf{C}} + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^{\mathsf{S}} \right]$$
(1)

where $\mathcal{R}_{ss'}^{S}$ & $\mathcal{R}_{ss'}^{C}$ are the stop/continue rewards The L - lth **stopping time** τ_l is:

$$\tau_{I} = \inf\{t : t > \tau_{I-1}, a_{t} = S\}, \qquad I \in 1, .., L, \ \tau_{L+1} = 0$$

- τ_l is a random variable from sample space Ω to \mathbb{N} , which is dependent on $h_{\tau} = \rho_1, a_1, o_1, \dots, a_{\tau-1}, o_{\tau}$ and independent of $a_{\tau}, o_{\tau+1}, \dots$
- We consider the class of stopping times T_t = {τ ≤ t} ∈ F_k where F_k is the natural filtration on h_t.
- Solution approaches: the Markovian approach and the martingale approach.

The Optimal Stopping Problem

- **The General Problem**:
 - A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
 - Two options per t: (i) continue to observe; or (ii) stop
 - Find the optimal stopping time τ^* :

$${}^{*} = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}^{\mathcal{C}}_{s_{t}s_{t+1}} + \gamma^{\tau-1} \mathcal{R}^{\mathcal{S}}_{s_{\tau}s_{\tau}} \right]$$
(2)

where $\mathcal{R}_{ss'}^{S}$ & $\mathcal{R}_{ss'}^{C}$ are the stop/continue rewards The L - lth **stopping time** τ_l is:

 $\tau_{I} = \inf\{t : t > \tau_{I-1}, a_{t} = S\}, \qquad I \in 1, .., L, \ \tau_{L+1} = 0$

- τ_l is a random variable from sample space Ω to \mathbb{N} , which is dependent on $h_{\tau} = \rho_1, a_1, o_1, \ldots, a_{\tau-1}, o_{\tau}$ and independent of $a_{\tau}, o_{\tau+1}, \ldots$
- We consider the class of stopping times $\mathcal{T}_t = \{\tau \leq t\} \in \mathcal{F}_k$ where \mathcal{F}_k is the natural filtration on h_t .
- Solution approaches: the Markovian approach and the martingale approach.
Optimal Stopping: Solution Approaches

The Markovian approach:

- Model the problem as a MDP or POMDP
- A policy π* that satisfies the <u>Bellman-Wald</u> equation is optimal:

$$\pi^*(s) = \operatorname*{arg\,max}_{\{S,C\}} \left[\underbrace{\mathbb{E}\left[\mathcal{R}_s^S\right]}_{\operatorname{stop}}, \underbrace{\mathbb{E}\left[\mathcal{R}_s^C + \gamma V^*(s')\right]}_{\operatorname{continue}} \right] \quad \forall s \in \mathcal{S}$$

 Solve by backward induction, dynamic programming, or reinforcement learning

Optimal Stopping: Solution Approaches

The Markovian approach:

• Assume all rewards are received upon stopping: R_s^{\emptyset}

- $V^*(s)$ majorizes R_s^{\emptyset} if $V^*(s) \ge R_s^{\emptyset} \forall s \in S$
- $V^*(s)$ is excessive if $V^*(s) \ge \sum_{s'} \mathcal{P}_{s's}^{\mathcal{C}} V^*(s') \ \forall s \in \mathcal{S}$
- $V^*(s)$ is the minimal excessive function which majorizes R_s^{\emptyset} .

Optimal Stopping: Solution Approaches

The martingale approach:

Model the state process as an arbitrary stochastic process

The reward of the optimal stopping time is given by the smallest supermartingale that stochastically dominates the process, called the Snell envelope⁷.

⁷J. L. Snell. "Applications of martingale system theorems". In: *Transactions of the American Mathematical Society* 73 (1952), pp. 293–312.

States:

• Intrusion state $s_t \in \{0,1\}$, terminal Ø. t

Observations:

▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

Reward: security and service. Penalty: false alarms and intrusions

- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$

Observations:

▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

- ▶ "Stop" (S) and "Continue" (C)
- Rewards:
 - Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$
- Observations:
 - ▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$
- Observations:
 - ▶ IDS Alerts weighted by priority o_t , stops 0 remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - ▶ Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$

Observations:

▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - ▶ Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)

Objective and Horizon:

States:

- ▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$
- Observations:
 - ▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

- ▶ "Stop" (S) and "Continue" (C)
- Rewards:
 - Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - ▶ Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start l_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø. $t \ge 1$

Observations:

▶ IDS Alerts weighted by priority o_t , stops remaining $l_t \in \{1, ..., L\}$, $f(o_t|s_t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

The Attacker's Optimal Stopping problem as an MDP

States:

- Intrusion state s_t ∈ {0,1}, terminal Ø, defender belief b ∈ [0,1].
- Actions:
 - "Stop" (S) and "Continue" (C)
- Rewards:
 - Reward: denial of service and intrusion. Penalty: detection

Transition probabilities:

- Intrusion starts and ends when the attacker takes stop actions
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

The Dynkin Game as a One-Sided POSG

Players:

- Player 1 is the defender and player 2 is the attacker. Hence, N = {1,2}.
- Actions:

$$\blacktriangleright \mathcal{A}_1 = \mathcal{A}_2 = \{S, C\}.$$

Rewards:

 Zero-sum game. Defender maximizes, attacker minimizes.

Observability:

The defender has partial observability. The attacker has full observability.

Obective functions:

$$J_{1}(\pi_{1},\pi_{2}) = \mathbb{E}_{(\pi_{1},\pi_{2})} \left[\sum_{t=1}^{T} \gamma^{t-1} \mathcal{R}(s_{t},a_{t}) \right]$$
(3)
$$J_{2}(\pi_{1},\pi_{2}) = -J_{1}(\pi_{1},\pi_{2})$$
(4)

Outline

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

Efficient Algorithms for Learning π^*

• T-SPSA: A stochastic approximation algorithm to learn π^*

• T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Conclusions & Future Work

Theorem

Given the intrusion response POMDP, the following holds:

- 1. $\mathscr{S}_{I-1} \subseteq \mathscr{S}_I$ for $I = 2, \ldots L$.
- 2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal defender policy of the form:

$$\pi_{L}^{*}(b(1)) = S \iff b(1) \ge \alpha^{*}$$
(5)

If L ≥ 1 and f_X is totally positive of order 2 (TP2), there exists L optimal thresholds α^{*}_l ∈ [0,1] and an optimal defender policy of the form:

$$\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, \qquad I = 1, \dots, L \quad (6)$$

where α_1^* is decreasing in 1.

Theorem

Given the intrusion response POMDP, the following holds:

1.
$$\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$$
 for $l = 2, \ldots L$.

2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal defender policy of the form:

$$\pi_L^*(b(1)) = S \iff b(1) \ge \alpha^* \tag{7}$$

If L ≥ 1 and f_X is totally positive of order 2 (TP2), there exists L optimal thresholds α^{*}_l ∈ [0, 1] and an optimal defender policy of the form:

$$\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, \qquad I = 1, \dots, L \quad (8)$$

where α_1^* is decreasing in 1.

Theorem

Given the intrusion response POMDP, the following holds:

1.
$$\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$$
 for $l = 2, \ldots L$.

2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal defender policy of the form:

$$\pi_{L}^{*}(b(1)) = S \iff b(1) \ge \alpha^{*}$$
(9)

If L ≥ 1 and f_X is totally positive of order 2 (TP2), there exists L optimal thresholds α^{*}_l ∈ [0, 1] and an optimal defender policy of the form:

$$\pi_l^*(b(1)) = S \iff b(1) \ge \alpha_l^*, \qquad l = 1, \dots, L \qquad (10)$$

where α_1^* is decreasing in 1.

Theorem

Given the intrusion response POMDP, the following holds:

1.
$$\mathscr{S}_{l-1} \subseteq \mathscr{S}_l$$
 for $l = 2, \ldots L$.

2. If L = 1, there exists an optimal threshold $\alpha^* \in [0, 1]$ and an optimal defender policy of the form:

$$\pi_{L}^{*}(b(1)) = S \iff b(1) \ge \alpha^{*}$$
(11)

3. If $L \ge 1$ and f_X is totally positive of order 2 (TP2), there exists L optimal thresholds $\alpha_I^* \in [0, 1]$ and an optimal defender policy of the form:

$$\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, \qquad I = 1, \dots, L \qquad (12)$$

where α_{l}^{*} is decreasing in I.

Lemma

(1, 0)

 $V^*(b)$ is piece-wise linear and convex.

- Belief space \mathcal{B} is the $|\mathcal{S}-1|$ dimensional unit simplex.
- ▶ $|\mathcal{B}| = \infty$, high-dimensional $(|\mathcal{S} 1|)$ continuous vector
- ▶ Infinite set of deterministic policies: $\max_{\pi:\mathcal{B}\to\mathcal{A}} \mathbb{E}_{\pi}[\sum_{t} r_t]$

• Only finite set of belief points $b \in \mathcal{B}$ are "reachable".

▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$

Set of pure strategies in an extensive game against nature

• Only finite set of belief points $b \in \mathcal{B}$ are "reachable".

▶ Finite horizon \implies finite set of "conditional plans" $\mathcal{H} \to \mathcal{A}$

Set of pure strategies in an extensive game against nature

For each conditional plan $\beta \in \Gamma$:

• Define vector $\alpha^{\beta} \in \mathbb{R}^{|S|}$ such that $\alpha_{i}^{\beta} = V^{\beta}(i)$

 $\blacktriangleright \implies V^{\beta}(b) = b^{T} \alpha^{\beta} \text{ (linear in } b\text{).}$

► Thus, $V^*(b) = \max_{\beta \in \Gamma} b^T \alpha^\beta$ (piece-wise linear and convex⁸)

For each conditional plan $\beta \in \Gamma$:

- Define vector $\alpha^{\beta} \in \mathbb{R}^{|S|}$ such that $\alpha_{i}^{\beta} = V^{\beta}(i)$ $\implies V^{\beta}(b) = b^{T} \alpha^{\beta}$ (linear in b).

► Thus, $V^*(b) = \max_{\beta \in \Gamma} b^T \alpha^\beta$ (piece-wise linear and convex⁹)

Proofs: \mathscr{S}_1 is convex¹⁰

𝒴₁ is convex if:
for any two belief states b₁, b₂ ∈ 𝒴₁
any convex combination of b₁, b₂ is also in 𝒴₁
i.e. b₁, b₂ ∈ 𝒴₁ ⇒ λb₁ + (1 − λ)b₂ ∈ 𝒴₁ for λ ∈ [0, 1].
Since V*(b) is convex:
V*(λb₁ + (1 − λ)b₂) ≤ λV*(b₁) + (1 − λ)V(b₂)

Since $b_1, b_2 \in \mathscr{S}_1$: $V^*(b_1) = Q^*(b_1, S)$ S=stop $V^*(b_2) = Q^*(b_2, S)$ S=stop

¹⁰Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹¹

𝒴₁ is convex if:
for any two belief states b₁, b₂ ∈ 𝒴₁
any convex combination of b₁, b₂ is also in 𝒴₁
i.e. b₁, b₂ ∈ 𝒴₁ ⇒ λb₁ + (1 − λ)b₂ ∈ 𝒴₁ for λ ∈ [0, 1].

Since V*(b) is convex:

$$V^*(\lambda b_1+(1-\lambda)b_2)\leq \lambda V^*(b_1)+(1-\lambda)V(b_2)$$

► Since
$$b_1, b_2 \in \mathscr{S}_1$$
:
 $V^*(b_1) = Q^*(b_1, S)$ S=stop
 $V^*(b_2) = Q^*(b_2, S)$ S=stop

¹¹Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹²

𝒴₁ is convex if:
for any two belief states b₁, b₂ ∈ 𝒴₁
any convex combination of b₁, b₂ is also in 𝒴₁
i.e. b₁, b₂ ∈ 𝒴₁ ⇒ λb₁ + (1 − λ)b₂ ∈ 𝒴₁ for λ ∈ [0, 1].

Since V*(b) is convex:

$$V^*(\lambda b_1+(1-\lambda)b_2)\leq \lambda V^*(b_1)+(1-\lambda)V(b_2)$$

► Since
$$b_1, b_2 \in \mathscr{S}_1$$
:
 $V^*(b_1) = Q^*(b_1, S)$ S=stop
 $V^*(b_2) = Q^*(b_2, S)$ S=stop

¹²Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹³

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S) \end{aligned}$$

¹³Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹⁴

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$: $V^*(\lambda b_1(1) + (1 - \lambda)b_2(1)) \le \lambda V^*(b_1(1)) + (1 - \lambda)V^*(b_2(1))$ $= \lambda Q^*(b_1, S) + (1 - \lambda)Q^*(b_2, S)$ $= \lambda \mathcal{R}_{b_1}^{\emptyset} + (1 - \lambda)\mathcal{R}_{b_2}^{\emptyset}$ $= \sum_s (\lambda b_1(s) + (1 - \lambda)b_2(s))\mathcal{R}_s^{\emptyset}$

¹⁴Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹⁵

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$\begin{split} V^*(\lambda b_1(1) + (1-\lambda)b_2(1)) &\leq \lambda V^*(b_1(1)) + (1-\lambda)V^*(b_2(1)) \\ &= \lambda Q^*(b_1,S) + (1-\lambda)Q^*(b_2,S) \\ &= \lambda \mathcal{R}^{\emptyset}_{b_1} + (1-\lambda)\mathcal{R}^{\emptyset}_{b_2} \\ &= \sum_s (\lambda b_1(s) + (1-\lambda)b_2(s))\mathcal{R}^{\emptyset}_s \\ &= Q^*(\lambda b_1 + (1-\lambda)b_2,S) \end{split}$$

¹⁵Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹⁶

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S)\ &=\lambda \mathcal{R}^{\emptyset}_{b_1}+(1-\lambda)\mathcal{R}^{\emptyset}_{b_2}\ &=\sum_s(\lambda b_1(s)+(1-\lambda)b_2(s))\mathcal{R}^{\emptyset}_s\ &=Q^*(\lambda b_1+(1-\lambda)b_2,S)\ &\leq V^*(\lambda b_1(1)+(1-\lambda)b_2(1)) \end{aligned}$$

the last inequality is because V^* is optimal. The second-to-last is because there is just a single stop.

¹⁶Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹⁷

Proof.

Assume $b_1, b_2 \in \mathscr{S}_1$. Then for any $\lambda \in [0, 1]$:

$$egin{aligned} V^*(\lambda b_1(1)+(1-\lambda)b_2(1))&\leq \lambda V^*(b_1(1))+(1-\lambda)V^*(b_2(1))\ &=\lambda Q^*(b_1,S)+(1-\lambda)Q^*(b_2,S)\ &=Q^*(\lambda b_1+(1-\lambda)b_2,S)\ &\leq V^*(\lambda b_1(1)+(1-\lambda)b_2(1)) \end{aligned}$$

the last inequality is because V^* is optimal. The second-to-last is because there is just a single stop. Hence:

 $Q^*(\lambda b_1 + (1 - \lambda)b_2, S) = V^*(\lambda b_1(1) + (1 - \lambda)b_2(1))$

 $b_1, b_2 \in \mathscr{S}_1 \implies (\lambda b_1 + (1 - \lambda)) \in \mathscr{S}_1$. Therefore \mathscr{S}_1 is convex.

¹⁷Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: \mathscr{S}_1 is convex¹⁸

¹⁸Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: Single-threshold policy is optimal if $L = 1^{19}$

- ▶ In our case, $\mathcal{B} = [0, 1]$. We know \mathscr{S}_1 is a convex subset of \mathcal{B} .
- Consequence, $\mathscr{S}_1 = [\alpha^*, \beta^*]$. We show that $\beta^* = 1$.
- If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b_{C}^{o}(1))}_{a=C} \right]$$
$$= \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e } \pi^{*}(1) = \text{Stop}$$
Hence $1 \in \mathscr{S}_{1}$. It follows that $\mathscr{S}_{1} = [\alpha^{*}, 1]$ and:

¹⁹Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. lzmir, Turkey, 2021.
Proofs: Single-threshold policy is optimal if $L = 1^{20}$

- In our case, B = [0, 1]. We know S₁ is a convex subset of B.
 Consequence, S₁ = [α^{*}, β^{*}]. We show that β^{*} = 1.
- If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b_{C}^{o}(1))}_{a=C} \right]$$
$$= \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e } \pi^{*}(1) = \text{Stop}$$
$$\text{Hence } 1 \in \mathscr{S}_{1}. \text{ It follows that } \mathscr{S}_{1} = [\alpha^{*}, 1] \text{ and:}$$
$$\pi^{*}(b(1)) = \begin{cases} S & \text{if } b(1) \ge \alpha^{*} \\ C & \text{otherwise} \end{cases}$$

²⁰Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. lzmir, Turkey, 2021.

Proofs: Single-threshold policy is optimal if $L = 1^{21}$

▶ In our case, $\mathcal{B} = [0, 1]$. We know \mathcal{S}_1 is a convex subset of \mathcal{B} .

• Consequence, $\mathscr{S}_1 = [\alpha^*, \beta^*]$. We show that $\beta^* = 1$.

If b(1) = 1, using our definition of the reward function, the Bellman equation states:

$$\pi^{*}(1) \in \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150 + V^{*}(\emptyset)}_{a=S}, \underbrace{-90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^{*}(b^{o}_{C}(1))}_{a=C} \right]$$
$$= \underset{\{S,C\}}{\operatorname{arg\,max}} \left[\underbrace{150}_{a=S}, \underbrace{-90 + V^{*}(1)}_{a=C} \right] = S \quad \text{i.e} \ \pi^{*}(1) = \operatorname{Stop}$$

• Hence $1 \in \mathscr{S}_1$. It follows that $\mathscr{S}_1 = [\alpha^*, 1]$ and:

$$\pi^*(b(1)) = egin{cases} S & ext{ if } b(1) \geq lpha^* \ C & ext{ otherwise} \end{cases}$$

²¹Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. lzmir, Turkey, 2021. Proofs: Single-threshold policy is optimal if L = 1

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{22}$

• We want to show that
$$\mathscr{S}_I \subseteq \mathscr{S}_{1+I}$$

Bellman Equation:

 $\pi^*_{I-1}(b(1))\in rg\max_{\{S,C\}}$

 $\blacktriangleright \implies$ optimal to stop if:

$$\mathcal{R}_{b(1),l-1}^{S} - \mathcal{R}_{b(1),l-1}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \right) 13$$

▶ Hence, if $b(1) \in \mathscr{S}_{l-1}$, then (13) holds.

²²T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{23}$

• We want to show that $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}$

Bellman Equation:

$$\pi_{l-1}^{*}(b(1)) \in \underset{\{S,C\}}{\arg\max} \left[\underbrace{\mathcal{R}_{b(1),l-1}^{S} + \sum_{o} \mathbb{P}_{b(1)}^{o} V_{l-2}^{*}(b^{o}(1))}_{\text{Stop}}, \underbrace{\mathcal{R}_{b(1),l-1}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} V_{l-1}^{*}(b^{o}(1))}_{\text{Continue}} \right]$$

 $\blacktriangleright \implies$ optimal to stop if:

$$\mathcal{R}_{b(1),l-1}^{S} - \mathcal{R}_{b(1),l-1}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \right) 13$$

▶ Hence, if $b(1) \in \mathscr{S}_{l-1}$, then (13) holds.

²³T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}^{24}$

• We want to show that $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}$

Bellman Equation:

$$\pi_{l-1}^{*}(b(1)) \in \arg\max_{\{S,C\}} \left[\underbrace{\mathcal{R}_{b(1),l-1}^{S} + \sum_{o} \mathbb{P}_{b(1)}^{o} V_{l-2}^{*}(b^{o}(1))}_{\text{Stop}}, \underbrace{\mathcal{R}_{b(1),l-1}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} V_{l-1}^{*}(b^{o}(1))}_{\text{Continue}} \right]$$

 $\blacktriangleright \implies$ optimal to stop if:

$$\mathcal{R}_{b(1),l-1}^{S} - \mathcal{R}_{b(1),l-1}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$
(13)

• Hence, if
$$b(1) \in \mathscr{S}_{l-1}$$
, then (13) holds.

²⁴T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445. Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{25}$

$$\mathcal{R}^{S}_{b(1)} - \mathcal{R}^{C}_{b(1)} \geq \sum_{o} \mathbb{P}^{o}_{b(1)} \Big(V^{*}_{l-1}(b^{o}(1)) - V^{*}_{l-2}(b^{o}(1)) \Big)$$

- ▶ We want to show that $b(1) \in \mathscr{S}_{l-2} \implies b(1) \in \mathscr{S}_{l-1}$.
- Sufficient to show that LHS above is non-decreasing in / and RHS is non-increasing in /.
- ► LHS is non-decreasing by definition of reward function.
- We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define $W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$

²⁵T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{26}$

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$

- ▶ We want to show that $b(1) \in \mathscr{S}_{l-2} \implies b(1) \in \mathscr{S}_{l-1}$.
- Sufficient to show that LHS above is non-decreasing in / and RHS is non-increasing in /.

► LHS is non-decreasing by definition of reward function.

We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.

• We know
$$\lim_{k\to\infty} V^k(b) = V^*(b)$$
.

• Define $W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$

²⁶T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{27}$

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \ge \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l-2}^{*}(b^{o}(1)) \Big)$$

- ▶ We want to show that $b(1) \in \mathscr{S}_{l-2} \implies b(1) \in \mathscr{S}_{l-1}.$
- Sufficient to show that LHS above is non-decreasing in *l* and RHS is non-increasing in *l*.
- ► LHS is non-decreasing by definition of reward function.
- We show that RHS is non-increasing by induction on k = 0, 1... where k is the iteration of value iteration.
- We know $\lim_{k\to\infty} V^k(b) = V^*(b)$.

• Define
$$W_l^k(b(1)) = V_l^k(b(1)) - V_{l-1}^k(b(1))$$

²⁷T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{28}$

Proof.
$$W_{l}^{0}(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_{l}^{k-1}(b(1)) \ge 0.$

²⁸T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}^{29}$

Proof. $W_l^0(b(1)) = 0 \ \forall l.$ Assume $W_{l-1}^{k-1}(b(1)) - W_l^{k-1}(b(1)) \ge 0.$ $W_{l-1}^k(b(1)) - W_l^k(b(1)) = 2V_{l-1}^k - V_{l-2}^k - V_l^k$

²⁹T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{I} \subseteq \mathscr{S}_{1+I}^{30}$

Proof.

$$W_{l}^{0}(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_{l}^{k-1}(b(1)) \ge 0.$
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = 2V_{l-1}^{k} - V_{l-2}^{k} - V_{l}^{k} =$
 $2\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} - \mathcal{R}_{b(1)}^{a_{l-2}^{k}}$
 $+ \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(2V_{l-1-a_{l-1}^{k}}^{k-1}(b(1)) - V_{l-a_{l}^{k}}^{k-1}(b(1)) - V_{l-2-a_{l-2}^{k}}^{k-1}(b(1)) \right)$

Want to show that the above is non-negative. This depends on $a_l^k, a_{l-1}^k, a_{l-2}^k$.

³⁰T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{31}$

Proof.

$$W_{l}^{0}(b(1)) = 0 \ \forall l.$$
 Assume $W_{l-1}^{k-1}(b(1)) - W_{l}^{k-1}(b(1)) \ge 0.$
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = 2V_{l-1}^{k} - V_{l-2}^{k} - V_{l}^{k} =$
 $2\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} - \mathcal{R}_{b(1)}^{a_{l-2}^{k}}$
 $+ \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o}(2V_{l-1-a_{l-1}^{k}}^{k-1}(b(1)) - V_{l-a_{l}^{k}}^{k-1}(b(1)) - V_{l-2-a_{l-2}^{k}}^{k-1}(b(1)))$

Want to show that the above is non-negative. This depends on $a_l^k, a_{l-1}^k, a_{l-2}^k$.

There are four cases to consider: (1) $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$; (2) $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$; (3) $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$; (4) $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$.

The other cases, e.g. $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$, can be discarded due to the induction assumption.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{32}$

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$, then: $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)) \Big)$

which is non-negative by the induction hypothesis.

³²T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{33}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)))$

which is non-negative by the induction hypothesis.

If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then:

 $W_{l}^{k}(b(1)) - W_{l-1}^{k}(b(1)) = \mathcal{R}_{b(1)}^{C} - \mathcal{R}_{b(1)}^{S} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-1}^{k-1}(b^{o}(1)) \Big)$

³³T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{34}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{S}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-2}^{k-1}(b^{o}(1)) - W_{l-1}^{k-1}(b^{o}(1)))$

which is non-negative by the induction hypothesis.

If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l}^{k}(b(1)) - W_{l-1}^{k}(b(1)) = \mathcal{R}_{b(1)}^{C} - \mathcal{R}_{b(1)}^{S} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$

Bellman eq. implies, if $b(1) \in \mathscr{C}_{l-1}$, then:

$$\mathcal{R}^{\boldsymbol{C}}_{b(1)} - \mathcal{R}^{\boldsymbol{S}}_{b(1)} + \sum_{\boldsymbol{o} \in \mathcal{O}} \mathbb{P}^{\boldsymbol{o}}_{b(1)} \Big(W^{k-1}_{l-1}(\boldsymbol{b}^{\boldsymbol{o}}(1)) \Big) \geq 0$$

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{35}$

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then: $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(W_{l-1}^{k-1}(b^{o}(1)) \right)$

³⁵T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{36}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1)))$
Bellman eq. implies, if $b(1) \in \mathscr{S}_{l-1}^{k}$, then:
 $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} (W_{l-1}^{k-1}(b^{o}(1))) \ge 0$

 $o \in O$

³⁶T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: *Journal of Optimization Theory and Applications* 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{37}$

Proof.
If
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$$
, then:
 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(W_{l-1}^{k-1}(b^{o}(1)) \right)$

Bellman eq. implies, if $b(1) \in \mathscr{S}_{l-1}^k$, then:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} - \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-1}^{k-1}(b^{o}(1)) \Big) \ge 0$$

If $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k} \cap \mathscr{C}_{l-2}^{k}$, then:

 $W_{l-1}^{k}(b(1)) - W_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \Big(W_{l-1}^{k-1}(b^{o}(1)) - W_{l}^{k-1}(b^{o}(1)) \Big)$

which is non-negative by the induction hypothesis.

³⁷T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. Proofs: Nested stopping sets $\mathscr{S}_{l} \subseteq \mathscr{S}_{1+l}^{38}$

 $\mathscr{S}_1 \subseteq \mathscr{S}_2$ still allows:

We need to show that \mathscr{S}_{l} is connected, for all $l \in \{1, \ldots, L\}$.

³⁸T. Nakai. "The problem of optimal stopping in a partially observable Markov chain". In: Journal of Optimization Theory and Applications 45.3 (1985), pp. 425–442. ISSN: 1573-2878. DOI: 10.1007/BF00938445. URL: https://doi.org/10.1007/BF00938445.

Proofs: Connected stopping sets \mathscr{S}_{l}^{39}

▶
$$\mathscr{S}_l$$
 is connected if $b(1) \in \mathscr{S}_l, b'(1) \ge b(1) \implies b'(1) \in \mathscr{S}_l$

• If $b(1) \in \mathscr{S}_l$ we use the Bellman eq. to obtain:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \sum_{o} \mathbb{P}_{b(1)}^{o} \Big(V_{l-1}^{*}(b^{o}(1)) - V_{l}^{*}(b^{o}(1)) \Big) \ge 0$$

• We need to show that the above inequality holds for any $b'(1) \geq b(1)$

³⁹Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Monotone belief update

Lemma (Monotone belief update)

Given two beliefs $b_1(1) \ge b_2(1)$, if the transition probabilities and the observation probabilities **are Totally Positive of Order 2 (TP2)**, then $b_{a,1}^o(1) \ge b_{a,2}^o(1)$, where $b_{a,1}^o(1)$ and $b_{a,2}^o(1)$ denote the beliefs updated with the Bayesian filter after taking action $a \in A$ and observing $o \in \mathcal{O}$.

See Theorem 10.3.1 and proof on pp 225,238 in⁴⁰

⁴⁰Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Proofs: Necessary Condition, Total Positivity of Order 2⁴¹

A row-stochastic matrix is totally positive of order 2 (TP2) if:

- The rows of the matrix are stochastically monotone
- Equivalently, all second-order minors are non-negative.

Example:

$$A = \begin{bmatrix} 0.3 & 0.5 & 0.2 \\ 0.2 & 0.4 & 0.4 \\ 0.1 & 0.2 & 0.7 \end{bmatrix}$$
(14)

There are $\binom{3}{2}^2$ second-order minors:

$$det\begin{bmatrix} 0.3 & 0.5\\ 0.2 & 0.4 \end{bmatrix} = 0.02, \quad det\begin{bmatrix} 0.2 & 0.4\\ 0.1 & 0.2 \end{bmatrix} = 0, \dots etc. \quad (15)$$

Since all minors are non-negative, the matrix is TP2

⁴¹Samuel Karlin. "Total positivity, absorption probabilities and applications". In: *Transactions of the American Mathematical Society* 111 (1964).

Proofs: Connected stopping sets \mathscr{S}_{l}^{42}

Since the transition probabilities are TP2 by definition and we assume the observation probabilities are TP2, the condition for showing that the stopping sets are connected reduces to the following.

Show that the below expression is weakly increasing in b(1).

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{*}(b(1)) - V_{l}^{*}(b(1))$$

We prove this by induction on k.

⁴²Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets \mathscr{S}_{l}^{43}

Assume
$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$$
 is weakly increasing in $b(1)$.

$$\begin{aligned} &\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ &\mathcal{R}_{b(1)}^{a_{l-1}^{k}} - \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

⁴³Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets S_1^{44}

Assume
$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$$
 is weakly increasing in $b(1)$.

$$\begin{aligned} \mathcal{R}_{b(1)}^{S} &- \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ \mathcal{R}_{b(1)}^{a_{l-1}^{k}} &- \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

Want to show that the above is weakly-increasing in b(1). This depends on a_l^k and a_{l-1}^k .

⁴⁴Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets \mathscr{S}_{l}^{45}

Assume $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k-1}(b(1)) - V_{l}^{k-1}(b(1))$ is weakly increasing in b(1).

$$\begin{aligned} \mathcal{R}_{b(1)}^{S} &- \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + \\ \mathcal{R}_{b(1)}^{a_{l-1}^{k}} &- \mathcal{R}_{b(1)}^{a_{l}^{k}} + \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1-a_{l-1}^{k}}^{k-1}(b^{o}(1)) - V_{l-a_{l}^{k}}^{k-1}(b^{o}(1)) \right) \end{aligned}$$

Want to show that the above is weakly-increasing in b(1). This depends on a_l^k and a_{l-1}^k .

There are three cases to consider:

1.
$$b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k}$$

2. $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$
3. $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$

⁴⁵Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets \mathscr{S}_{l}^{46}

Proof.

If $b(1) \in \mathscr{S}_{l} \cap \mathscr{S}_{l-1}$, then:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \\\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-2}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right)$$

which is weakly increasing in b(1) by the induction hypothesis.

⁴⁶Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets \mathscr{S}_{l}^{47}

Proof. If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{S}_{l-1}^{k}$, then: $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) =$ $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-2}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right)$

which is weakly increasing in b(1) by the induction hypothesis.

If $b(1) \in \mathscr{S}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$, then: $\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{k-1}(b^{o}(1)) - V_{l-1}^{k-1}(b^{o}(1)) \right) = 0$

which is trivially weakly increasing in b(1).

⁴⁷Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Connected stopping sets \mathscr{S}_{l}^{48}

Proof.

If $b(1) \in \mathscr{C}_{l}^{k} \cap \mathscr{C}_{l-1}^{k}$, then:

$$\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} + V_{l-1}^{k}(b(1)) - V_{l}^{k}(b(1)) = \\\mathcal{R}_{b(1)}^{S} - \mathcal{R}_{b(1)}^{C} \sum_{o \in \mathcal{O}} \mathbb{P}_{b(1)}^{o} \left(V_{l-1}^{k-1}(b^{o}(1)) - V_{l}^{k-1}(b^{o}(1)) \right)$$

which is weakly increasing in b(1) by the induction hypothesis.

Hence, if $b(1) \in \mathscr{S}_l$ and $b'(1) \ge b(1)$ then $b'(1) \in \mathscr{S}_l$. Therefore, \mathscr{S}_l is connected.

⁴⁸Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Proofs: Optimal multi-threshold policy π_I^{*49}

We have shown that:

- $\blacktriangleright \ \mathscr{S}_1 = [\alpha_1^*, 1]$
- $\blacktriangleright \ \mathscr{S}_{l} \subseteq \mathscr{S}_{l+1}$
- \mathscr{S}_{l} is connected (convex) for $l = 1, \ldots, L$

It follows that, $\mathscr{S}_l = [\alpha_l^*, 1]$ and $\alpha_1^* \ge \alpha_2^* \ge \ldots \ge \alpha_L^*$.

⁴⁹Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: IEEE Transactions on Network and Service Management 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Structural Result: Best Response Multi-Threshold Attacker Strategy

Theorem

Given the intrusion MDP, the following holds:

1. Given a defender strategy $\pi_1 \in \Pi_1$ where $\pi_1(S|b(1))$ is non-decreasing in b(1) and $\pi_1(S|1) = 1$, then there exist values $\tilde{\beta}_{0,1}, \tilde{\beta}_{1,1}, \ldots, \tilde{\beta}_{0,L}, \tilde{\beta}_{1,L} \in [0,1]$ and a best response strategy $\tilde{\pi}_2 \in B_2(\pi_1)$ for the attacker that satisfies

$$\begin{split} \tilde{\pi}_{2,l}(0,b(1)) &= C \iff \pi_{1,l}(S|b(1)) \ge \tilde{\beta}_{0,l} \quad (16)\\ \tilde{\pi}_{2,l}(1,b(1)) &= S \iff \pi_{1,l}(S|b(1)) \ge \tilde{\beta}_{1,l} \quad (17) \end{split}$$

for $l \in \{1, \ldots, L\}$.

Proof.

Follows the same idea as the proof for the defender case. $\mathsf{See}^{\mathsf{50}}.$

⁵⁰Kim Hammar and Rolf Stadler. Learning Near-Optimal Intrusion Responses Against Dynamic Attackers. 2023. 32/

Outline

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Conclusions & Future Work

A mixed threshold strategy where $\sigma(\tilde{\theta}_l^{(1)})$ is the threshold.

Parameterizes π̃_i through threshold vectors according to Theorem 1:

$$\varphi(\mathbf{a}, \mathbf{b}) \triangleq \left(1 + \left(\frac{b(1 - \sigma(\mathbf{a}))}{\sigma(\mathbf{a})(1 - b)}\right)^{-20}\right)^{-1}$$
(18)
$$_{i,\tilde{\theta}^{(i)}}(S|b(1)) \triangleq \varphi\left(\tilde{\theta}_{l}^{(i)}, b(1)\right)$$
(19)

- The parameterized strategies are mixed (and differentiable) strategies that approximate threshold strategies.
- Update threshold vectors $\theta^{(i)}$ using SPSA iteratively.

 $\tilde{\pi}$

Threshold-Fictitious Play to Approximate an Equilibrium

Fictitious play: iterative averaging of best responses.

Learn best response strategies iteratively through T-SPSA
 Average best responses to approximate the equilibrium

Comparison against State-of-the-art Algorithms

Outline

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Conclusions & Future Work

Outline

Use Case & Approach

- Use case: Intrusion response
- Approach: Optimal stopping

Theoretical Background & Formal Model

- Optimal stopping problem definition
- Formulating the Dynkin game as a one-sided POSG

Structure of π^*

- Stopping sets \mathscr{S}_l are connected and nested, \mathscr{S}_1 is convex.
- Existence of multi-threshold best response strategies $\tilde{\pi}_1, \tilde{\pi}_2$.

• Efficient Algorithms for Learning π^*

- T-SPSA: A stochastic approximation algorithm to learn π^*
- T-FP: A Fictitious-play algorithm to approximate (π_1^*, π_2^*)

Evaluation Results

Target system, digital twin, system identification, & results

Conclusions & Future Work

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

Emulate hosts with docker containers

- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

Our Approach for Automated Network Security

System Identification

- The distribution f_O of defender observations (system metrics) is unknown.
- We fit a Gaussian mixture distribution \hat{f}_O as an estimate of f_O in the target infrastructure.
- ▶ For each state *s*, we obtain the conditional distribution $\hat{f}_{O|s}$ through expectation-maximization.

Learning Curves in Simulation and Digital Twin

Conclusions

- We develop a method to automatically learn security strategies.
- We apply the method to an intrusion response use case.
- We design a solution framework guided by the theory of optimal stopping.
- We present several theoretical results on the structure of the optimal solution.
- We show numerical results in a realistic emulation environment.

Current and Future Work

1. Extend use case

- Additional defender actions
- Utilize SDN controller and NFV-based defenses
- Increase observation space and attacker model
- More heterogeneous client population

2. Extend solution framework

- Model-predictive control
- Rollout-based techniques
- Extend system identification algorithm

3. Extend theoretical results

- Exploit symmetries and causal structure
- Utilize theory to improve sample efficiency
- Decompose solution framework hierarchically