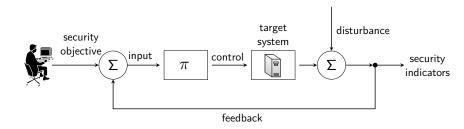
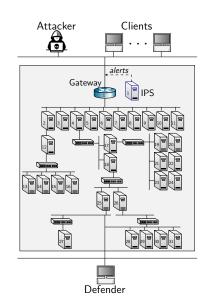
Self-Learning Intrusion Prevention Systems NSE Seminar 21/10 2022

Kim Hammar & Rolf Stadler



Use Case: Intrusion Prevention

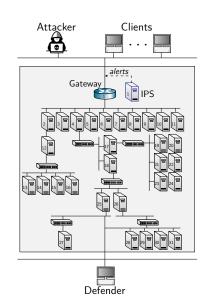
- A Defender owns an infrastructure
 - Consists of connected components
 - Components run network services
 - Defender defends the infrastructure by monitoring and active defense
 - Has partial observability
- An Attacker seeks to intrude on the infrastructure
 - Has a partial view of the infrastructure
 - Wants to compromise specific components
 - Attacks by reconnaissance, exploitation and pivoting



Challenges: Evolving and Automated Attacks

Challenges

- Evolving & automated attacks
- Complex infrastructures



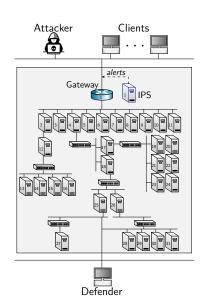
Goal: Automation and Learning

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods



Approach: Self-Learning Security Systems

Challenges

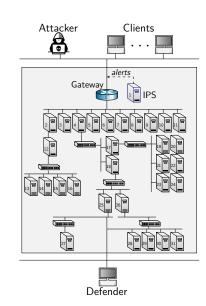
- Evolving & automated attacks
- Complex infrastructures

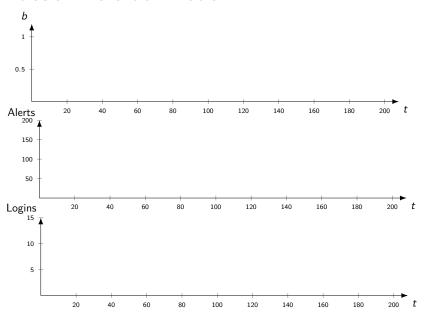
Our Goal:

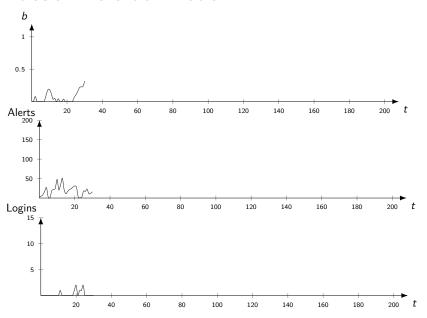
- Automate security tasks
- Adapt to changing attack methods

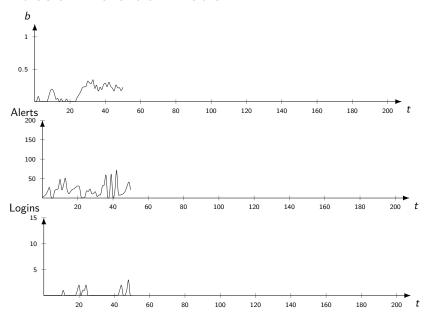
Our Approach: Self-Learning Systems:

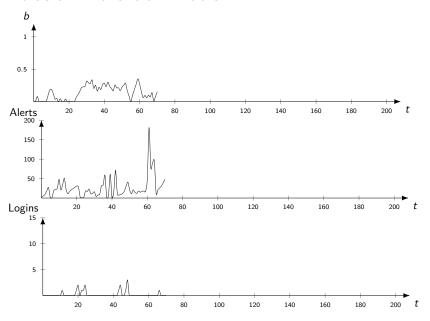
- real-time telemetry
- stream processing
- theories from control/game/decision theory
- computational methods (e.g. dynamic programming & reinforcement learning)
- automated network management (SDN, NFV, etc.)

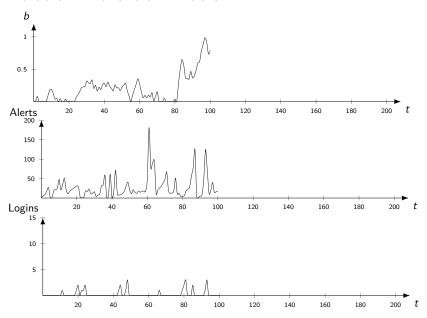


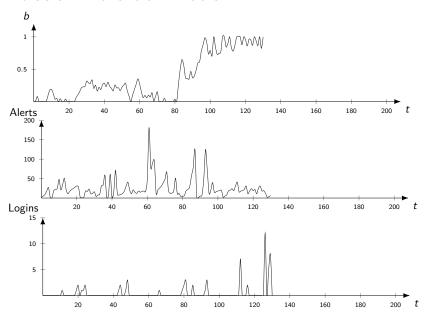


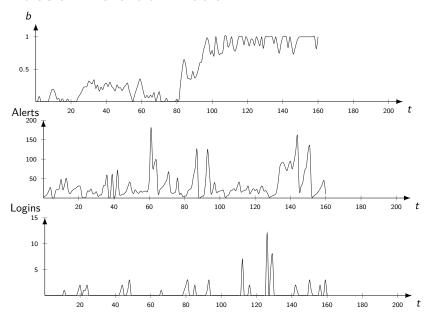


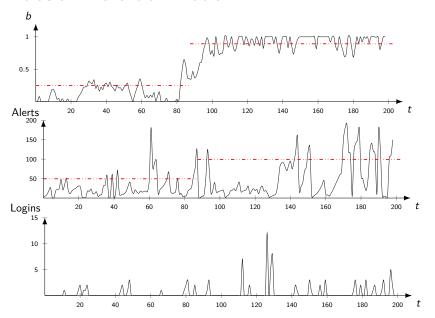


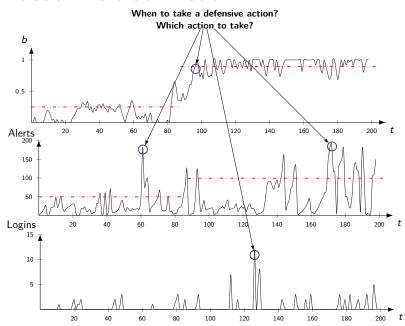




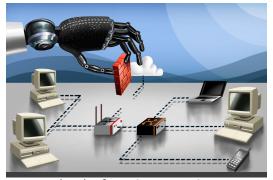








Self-learning Intrusion Prevention: Current Landscape



Levels of security automation

No automation.

Manual detection Manual prevention. No alerts. No automatic responses. Lack of tools.

Operator assistance.

Manual prevention. Audit logs. Security tools.

Partial automation.

Manual detection. System has automated functions for detection/prevention but requires manual updating and configuration. Automated attack mitigation. Intrusion detection systems. Intrusion prevention systems.

High automation. System automatically

updates itself. Automated attack detection.

1980s

1990s

2000s-Now

Research

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape
- Our Approach
 - ► Network emulation and digital twin
 - Stochastic game simulation and reinforcement learning
- Summary of results so far
 - Comparison with related work
 - Intrusion prevention through optimal multiple stopping
 - Dynkin games and learning in dynamic environments
 - System for policy validation
- Outlook on future work
 - Extend use case
 - Rollout-based methods
- Conclusions
 - Takeaways

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape
- Our Approach
 - Network emulation and digital twin
 - Stochastic game simulation and reinforcement learning
- Summary of results so far
 - Comparison with related work
 - Intrusion prevention through optimal multiple stopping
 - Dynkin games and learning in dynamic environments
 - System for policy validation
- Outlook on future work
 - Extend use case
 - Rollout-based methods
- Conclusions
 - Takeaways

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- ► Rollout-based methods

Conclusions

Takeaways

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal <u>multiple</u> stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Conclusions

Takeaways

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

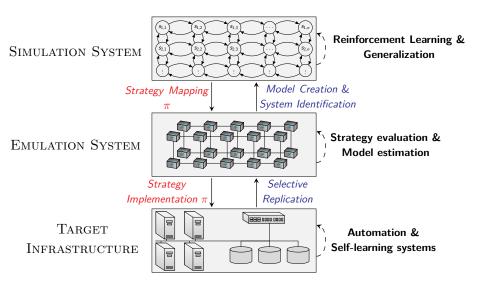
- Comparison with related work
- Intrusion prevention through optimal <u>multiple</u> stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

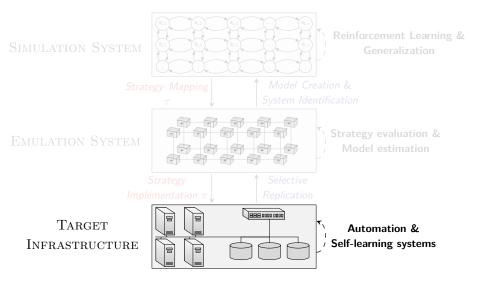
Outlook on future work

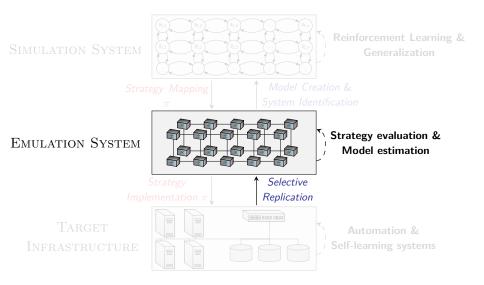
- Extend use case
- Rollout-based methods

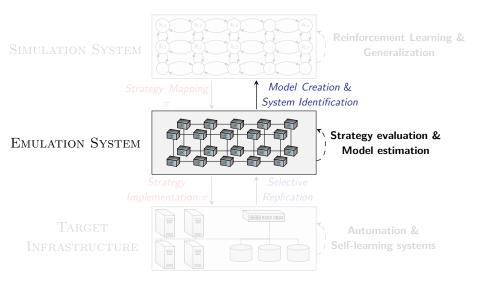
Conclusions

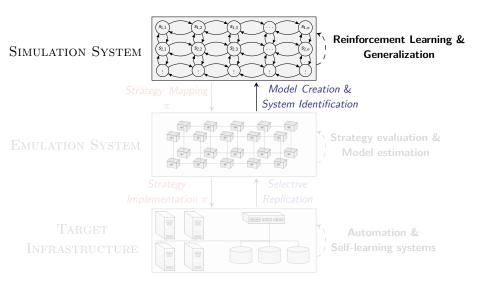
Takeaways

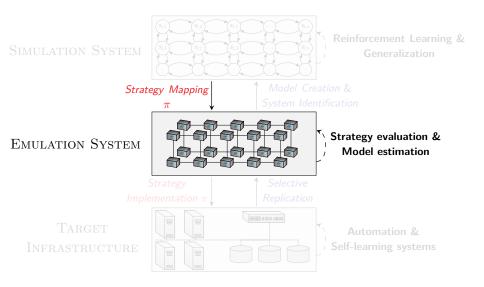


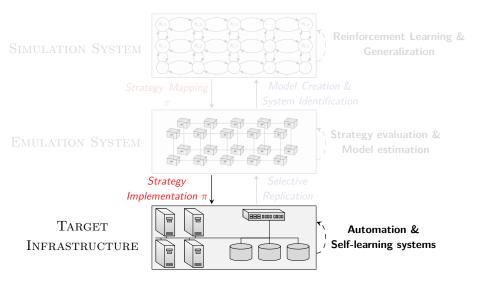


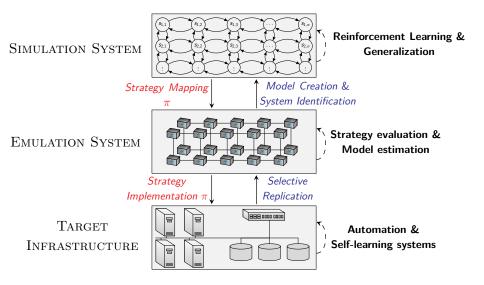


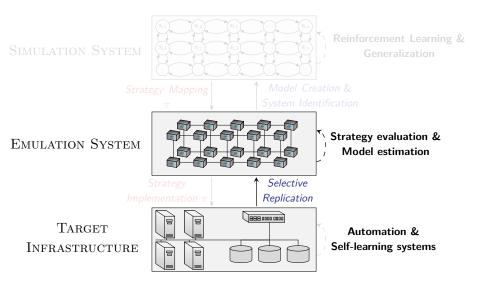




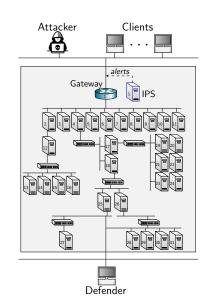




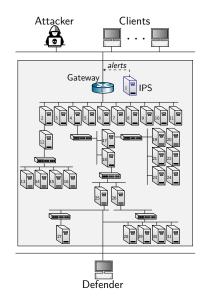




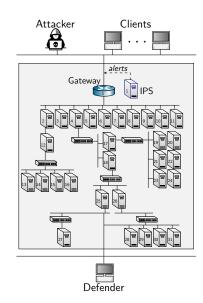
- ► Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- ▶ External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss



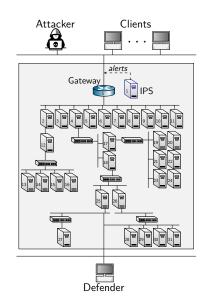
- ► Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss



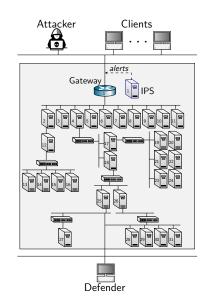
- Emulate hosts with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss



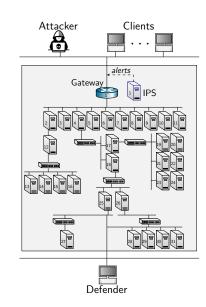
- Emulate hosts with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

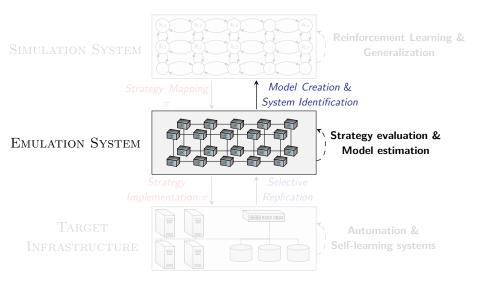


- ► Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

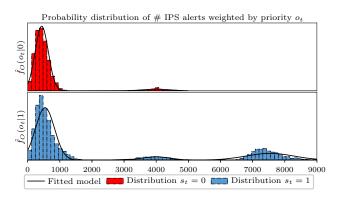


- Emulate hosts with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex
 loss-less with bit capacities of 1000
 Mbit/s
- ▶ External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss



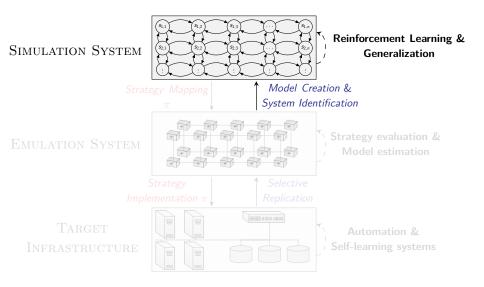


System Identification



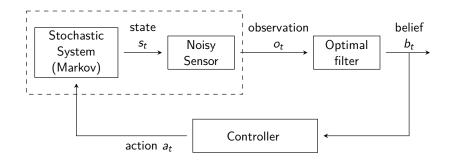
- ▶ The distribution f_O of defender observations (system metrics) is unknown.
- ▶ We fit a Gaussian mixture distribution \hat{f}_O as an estimate of f_O in the target infrastructure.
- ▶ For each state s, we obtain the conditional distribution $\hat{f}_{O|s}$ through expectation-maximization.

Our Approach for Automated Network Security



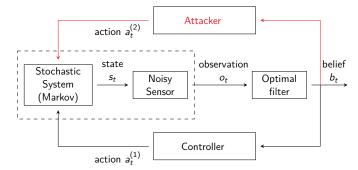
The Simulation System

- We model the evolution of the system with a discrete-time dynamical system.
- We assume a Markovian system with stochastic dynamics and partial observability.



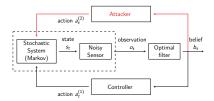
The Simulation System

- We model the evolution of the system with a discrete-time dynamical system.
- We assume a Markovian system with stochastic dynamics and partial observability.
- A Partially Observed Markov Decision Process (POMDP)
 If attacker is static.
- A Partially Observed Stochastic Game (POSG)
 - If attacker is dynamic.



The Simulation System

- We model the evolution of the system with a discrete-time dynamical system.
- We assume a Markovian system with stochastic dynamics and partial observability.
- A Partially Observed Markov Decision Process (POMDP)
 If attacker is static.
- A Partially Observed Stochastic Game (POSG)
 If attacker is dynamic.



Compute/learn control strategies: Stochastic approximation (RL), dynamic programming, linear programming, etc.

Outline

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape
- Our Approach
 - Network emulation and digital twin
 - Stochastic game simulation and reinforcement learning
- Summary of results so far
 - Comparison with related work
 - Intrusion prevention through optimal multiple stopping
 - Dynkin games and learning in dynamic environments
 - System for policy validation
- Outlook on future work
 - Extend use case
 - ► Rollout-based methods
- Conclusions
 - Takeaways

Outline

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

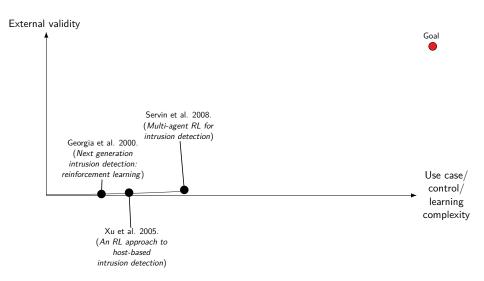
- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

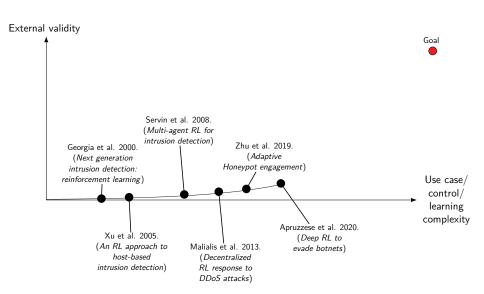
Outlook on future work

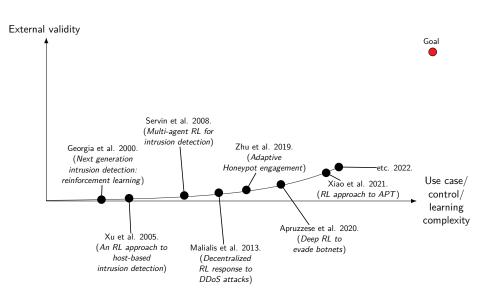
- Extend use case
- ► Rollout-based methods

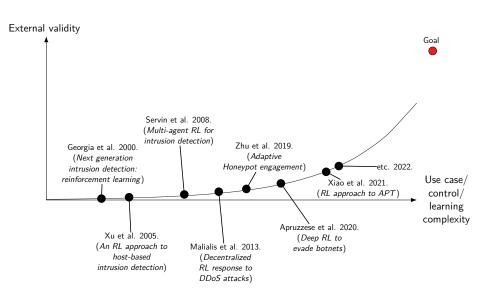
Conclusions

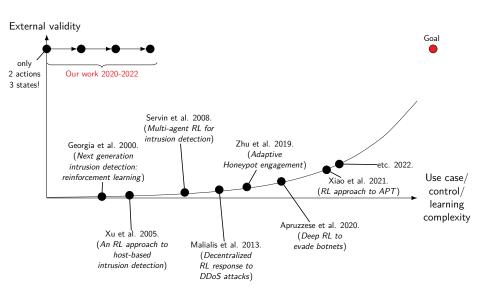
Takeaways











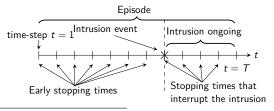
1: Intrusion Prevention through Optimal Stopping¹

- ► Intrusion Prevention as an Optimal Stopping Problem:
 - A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
 - ► Two options per t: (i) continue to observe; or (ii) stop
 - ▶ Find the *optimal stopping time* τ^* :

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^{\mathcal{C}} + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^{\mathcal{S}} \right]$$

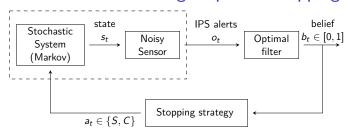
where $\mathcal{R}_{ss'}^{\mathcal{S}}$ & $\mathcal{R}_{ss'}^{\mathcal{C}}$ are the stop/continue rewards

► Stop action = Defensive action



¹Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm/2021/1570732932.pdf. Lzmir, Turkey, 2021.

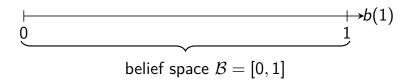
1: Intrusion Prevention through Optimal Stopping²



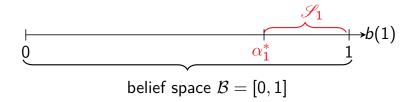
- ▶ **States:** Intrusion $s_t \in \{0,1\}$, terminal \emptyset .
- Observations:
 - ▶ Number of IPS Alerts $o_t \in \mathcal{O}$
 - o_t is drawn from r.v. $O \sim f_O(\cdot|s_t)$.
 - Based on history h_t of observations, the defender can compute the belief $b_t(s_t) = \mathbb{P}[s_t|h_t]$.
- ▶ Actions: $A_1 = A_2 = \{S, C\}$
- Rewards: security and service.
- **Transition probabilities:** Follows from game dynamics.

²Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. Jzmir, Turkey, 2021.

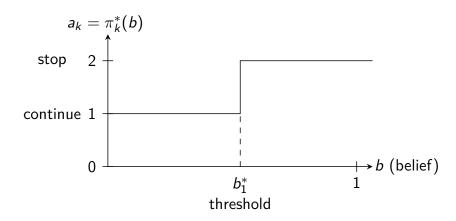
Convex Stopping set with Threshold $\alpha_1^* \in \mathcal{B}$



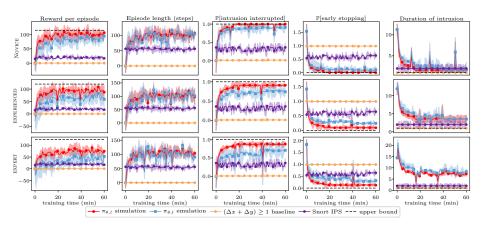
Convex Stopping set with Threshold $\alpha_1^* \in \mathcal{B}$



Bang-Bang Controller with Threshold $\alpha_1^* \in \mathcal{B}$



Learning Curves in Simulation and Emulation

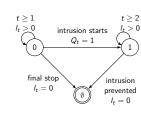


2: Intrusion Prevention through Optimal Multiple Stopping³

- Intrusion Prevention through Multiple Optimal Stopping:
 - Maximize reward of stopping times

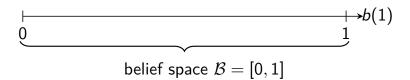
$$\tau_L, \tau_{L-1}, \ldots, \tau_1$$
:

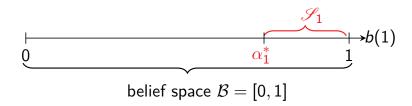
$$\begin{split} & \pi_{l}^{*} \in \arg\max_{\pi_{l}} \mathbb{E}_{\pi_{l}} \left[\sum_{t=1}^{\tau_{L}-1} \gamma^{t-1} \mathcal{R}_{s_{t}, s_{t+1}, L}^{C} \right. \\ & + \gamma^{\tau_{L}-1} \mathcal{R}_{s_{\tau_{L}}, s_{\tau_{L}+1}, L}^{S} + \ldots + \\ & \left. \sum_{t=1}^{\tau_{1}-1} \gamma^{t-1} \mathcal{R}_{s_{t}, s_{t+1}, 1}^{C} + \gamma^{\tau_{1}-1} \mathcal{R}_{s_{\tau_{1}}, s_{\tau_{1}+1}, 1}^{S} \right] \end{split}$$

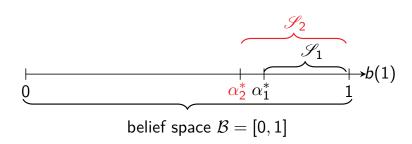


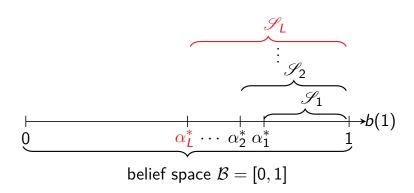
Each stopping time = one defensive action

³Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

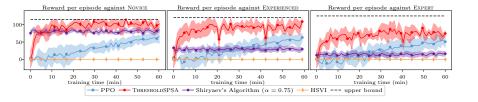








Comparison against State-of-the-art Algorithms

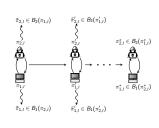


3: Intrusion Prevention through Optimal Multiple Stopping and Game-Play⁴

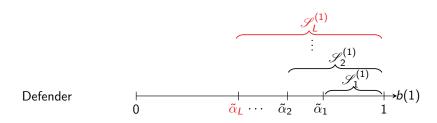
► Optimal stopping (Dynkin) game:

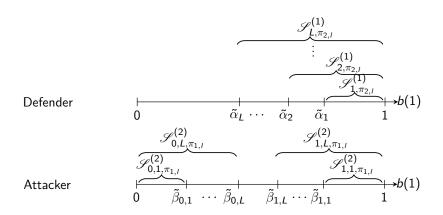
- Dynamic attacker
- Stop actions of the defender determine when to take defensive actions
- ► Goal: find Nash Equilibrium (NE) strategies and game value

$$\begin{split} J_1(\pi_{1,I},\pi_{2,I}) &= \mathbb{E}_{(\pi_{1,I},\pi_{2,I})} \left[\sum_{t=1}^T \gamma^{t-1} \mathcal{R}_{I_t}(s_t, \boldsymbol{a}_t) \right] \\ B_1(\pi_{2,I}) &= \operatorname*{max}_{\pi_{1,I} \in \Pi_1} J_1(\pi_{1,I},\pi_{2,I}) \\ B_2(\pi_{1,I}) &= \operatorname*{arg\;min}_{\pi_{2,I} \in \Pi_2} J_1(\pi_{1,I},\pi_{2,I}) \\ (\pi_{1,I}^*,\pi_{2,I}^*) &\in B_1(\pi_{2,I}^*) \times B_2(\pi_{1,I}^*) \quad \text{NE} \end{split}$$

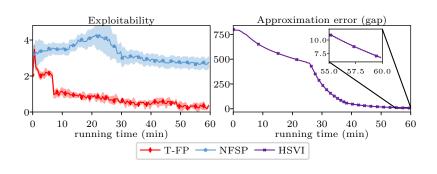


⁴Kim Hammar and Rolf Stadler. "Learning Security Strategies through Game Play and Optimal Stopping". In: Proceedings of the ML4Cyber workshop, ICML 2022, Baltimore, USA, July 17-23, 2022. PMLR, 2022.

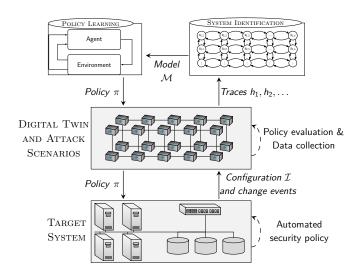




Converge Rates and Comparison with State-of-the-art Algorithms



4: Learning in Dynamic IT Environments⁵



⁵Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT Environments". In: *International Conference on Network and Service Management (CNSM 2022)*. Thessaloniki, Greece, 2022.

4: Learning in Dynamic IT Environments⁶

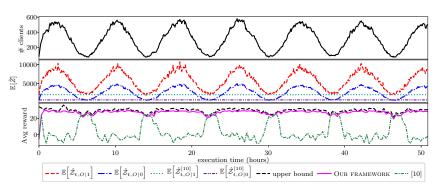
Algorithm 1: High-level execution of the framework Input: emulator: method to create digital twin φ: system identification algorithm ϕ : policy learning algorithm 1 Algorithm (emulator, φ , ϕ) do in parallel DIGITAL TWIN (emulator) 3 SystemIdProcess(φ) LearningProcess(ϕ) end Procedure DIGITALTWIN(emulator) Loop $\pi \leftarrow \text{ReceiveFromLearningProcess()}$ 3 $h_t \leftarrow \text{CollectTrace}(\pi)$ SendToSystemIdProcess (h_t) 5 UPDATEDIGITALTWIN(emulator) EndLoop Procedure SystemIdProcess(φ) Loop $h_1, h_2, \ldots \leftarrow \text{ReceiveFromDigitalTwin()}$ 3 $\mathcal{M} \leftarrow \varphi(h_1, h_2, ...)$ // estimate model SendToLearningProcess(\mathcal{M}) 5 EndLoop 1 Procedure LearningProcess(φ) 2 Loop $\mathcal{M} \leftarrow \text{ReceiveFromSystemIdProcess()}$ 3 $\pi \leftarrow \phi(\mathcal{M})$ // learn policy π SendToDigitalTwin(π) 5

EndLoop

Environments". In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki, Greece, 2022.

⁶Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT

Learning in Dynamic IT Environments⁷



Results from running our framework for 50 hours in the digital twin/emulation.

⁷Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT Environments". In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki, Greece, 2022.

Outline

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- ► Rollout-based methods

Conclusions

Takeaways

Outline

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal <u>multiple</u> stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

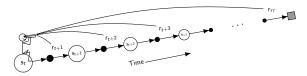
Outlook on future work

- Extend use case
- Rollout-based methods

Conclusions

Takeaways

Current and Future Work



1. Extend use case

- Additional defender actions
- Utilize SDN controller and NFV-based defenses
- Increase observation space and attacker model
- More heterogeneous client population

2. Extend solution framework

- Model-predictive control
- Rollout-based techniques
- Extend system identification algorithm

3. Extend theoretical results

- Exploit symmetries and causal structure
- Utilize theory to improve sample efficiency
- Decompose solution framework hierarchically

Conclusions

- We develop a method to automatically learn security strategies.
- We apply the method to an intrusion prevention use case.
- We design a solution framework guided by the theory of optimal stopping.
- We present several theoretical results on the structure of the optimal solution.
- We show numerical results in a realistic emulation environment.

