
1/36

Learning Near-Optimal Intrusion Responses for
Large-Scale IT Infrastructures via Decomposition

NSE Seminar

Kim Hammar

kimham@kth.se
Division of Network and Systems Engineering

KTH Royal Institute of Technology

Mar 31, 2023

2/36

Use Case: Intrusion Response

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IPS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

3/36

Can we use decision theory and learning-based methods to
automatically find effective security strategies?

Proof-of-concept.
Simulation.
Small-scale. (2020)1.

Optimal stopping.
Emulation.
Small-scale.
Static attacker. (2021)2.

Optimal multiple stopping.
Emulation.
Small-scale.
Static attacker. (2022)3

Dynkin game.
Emulation.
Small-scale.
Dynamic attacker. (2022)4

Decomposition.
Emulation.
Dynamic attacker.
Large-scale.
(This work)

1Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020). Izmir, Turkey, 2020.

2Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021). Izmir, Turkey, 2021.

3Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

4Kim Hammar and Rolf Stadler. Learning Near-Optimal Intrusion Responses Against Dynamic Attackers. 2023.
doi: 10.48550/ARXIV.2301.06085. url: https://arxiv.org/abs/2301.06085.

https://doi.org/10.1109/TNSM.2022.3176781
https://doi.org/10.48550/ARXIV.2301.06085
https://arxiv.org/abs/2301.06085

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

4/36

Our Framework for Automated Security

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

Key challenges: (1) sample complexity; (2) computational complexity.

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

5/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

6/36

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6/36

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

6/36

System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

7/36

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

7/36

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

7/36

State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i)i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t) are the actions.

s1 s2 s3

s4 s5 s4

...

8/36

Workflow Model

I Services are connected into workflows W = {w1, . . . ,w|W|}.

8/36

Workflow Model
I Services are connected into workflows W = {w1, . . . ,w|W|}.

gw fw idps lb

http
servers

auth
server

search
engine

db

cache

Dependency graph of an example workflow representing a web
application; gw, fw, idps, lb, and db are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and
database, respectively.

9/36

Workflow Model

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
directed acyclic subgraph (dag)
Gw = 〈{gw} ∪ Vw, Ew〉 of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow dag

9/36

Workflow Model

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
directed acyclic subgraph (dag)
Gw = 〈{gw} ∪ Vw, Ew〉 of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow dag

10/36

Client Model
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ), Service times Exp(1µ)
I Workflow selection: uniform
I Workflow interaction: Markov process

11/36

Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

11/36

Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

12/36

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii), stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

12/36

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii), stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

12/36

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii), stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control

13/36

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii), compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

13/36

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii), compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

13/36

Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii), compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution

13/36

The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J] (1a)

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t (1b)

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t (1c)

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t) ∀t (1d)

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t (1e)

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t (1f)

where E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} under the strategy profile (πD, πA).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si)i∈N , (Ai)i∈N , (fi)i∈N , u, γ, (b(i)
1)i∈N ,O,Z 〉

14/36

The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|

15/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

15/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

16/36

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

Does not directly
depend on the state or

action of a node
down here

17/36

Intuitively..

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 65

The optimal
action here...

But they are
not completely

independent either.

How can we
exploit this
structure?

Does not directly
depend on the state
or action of a node

down here

18/36

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

18/36

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

19/36

Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .

20/36

Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i)

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)

21/36

Additive Structure Across Workflows
Theorem (Additive structure across workflows)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t

22/36

Additive Structure Across Workflows: Minimal Example

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

a) IT infrastructure b) Transition dependencies
St ,At St+1,Ot+1

S(D)
t+1,1S(D)

t,1

A(D)
t,1 S(A)

t+1,1

S(A)
t,1 Ot,1

A(A)
t,1

S(D)
t+1,2S(D)

t,2

A(D)
t,2 S(A)

t+1,2

S(A)
t,2 Ot,2

A(A)
t,2

S(D)
t+1,3S(D)

t,3

A(D)
t,3 S(A)

t+1,3

S(A)
t,3 Ot,1

A(A)
t,3

c) Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

22/36

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

23/36

Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

23/36

Optimal substructure within a workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

IT infrastructure

Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3

24/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

Algorithm 1: Algorithm for combining local strate-
gies

1 Input: Γ: the game,
2 πk : a vector with local strategies
3 Output: (πD, πA): global game strategies
4 Algorithm composite-strategy(Γ,πk)
5 for player k ∈ N do
6 πk ←λ (s(k)

t , b(k)
t)

7 a(k)
t = ()

8 for workflow w ∈ W do
9 for node

i ∈ topological-sort(Vw) do
10 a(k,i)

t ← π
(i)
k (s(k)

t ,b(k)
t)

11 if gw 6→a(k)
t

t i then
12 a(k,i)

t ← ⊥
13 end
14 a(k)

t = a(k)
t ⊕ a(k,i)

t
15 end
16 end
17 return a(k)

t
18 end
19 return (πD, πA)

π
(1)
k

→1
ot,1 a(k)

t,1 a(k),′
t,1

π
(2)
k

→2⊕ot,2 a(k)
t,2 a(k),′

t,2

π
(3)
k

→3⊕ot,3 a(k)
t,3 a(k),′

t,3

...
π

(|Vw|)
k

→|Vw|⊕ot,|Vw|
a(k)

t,|Vw| a(k),′
t,|Vw|

⊕ a(k)
w

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D)i∈Vw : local strategies in the same workflow w ∈ W

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,1)
t ∼ π

(1)
D

Step 1; select action for node 1 according to its local strategy

Workflow action:
(a(D,1)

t)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,2)
t ∼ π

(2)
D

Step 2; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 2);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,4)
t = 0

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , ·, 0)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,3)
t ∼ π

(3)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,5)
t ∼ π

(5)
D

Step 4; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 5);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t)

25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,6)
t = 0

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t , 0)

26/36

Computational Benefits of Decomposition
I ∴ we can obtain an optimal (best response) strategy for the

full game Γ by combining the solutions to V simpler
subproblems that can be solved in parallel and have
significantly smaller state, observation, and action spaces.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

101

102

103

104

105

log10 |S| log10 |O| log10 |Ak |
log10 |S(i)| log10 |O(i)| log10 |A

(i)
k |

|V|

4 oom

3 oom

2 oom

Space complexity comparison between the full game and the decomposed
game.

27/36

System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently

28/36

Threshold Properties of Local Defender Strategies.
I The local problem of the defender can be decomposed in the

temporal domain as

max
πD

T∑
t=1

J = max
πD

τ1∑
t=1

J1 +
τ2∑

t=1
J2 + . . . (2)

where τ1, τ2, . . . are stopping times.
I =⇒ (1) selection of defensive actions is simplified; and (2)

the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised

29/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

29/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work

30/36

The Target Infrastructure

I 64 nodes. 24 ovs switches, 3
gateways. 6 honeypots. 8 application
servers. 4 administration servers. 15
compute servers.

I 11 vulnerabilities (cve-2010-0426,
cve-2015-3306, cve-2015-5602, etc.)

I 4 zones: dmz, r&d zone, admin
zone, quarantine zone

I 9 workflows

I Management: 1 sdn controller, 1
Kafka server, 1 elastic server.

r&d zone

App servers Honeynet

dmz

admin
zone

wo
rk
flo

w

Gateway idps
quarantine

zone
alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

31/36

Creating a Digital Twin of the Target Infrastructure

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

32/36

System Identification

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

33/36

p
ro

b
ab

il
it

y

ZO1
ZO2

ZO3
ZO4

ZO5
ZO6

ZO7
ZO8

p
ro

b
ab

il
it

y

ZO9
ZO10

ZO11
ZO12

ZO13
ZO14

ZO15
ZO16

p
ro

b
ab

il
it

y

ZO17
ZO18

ZO19
ZO20

ZO21
ZO22

ZO23
ZO24

p
ro

b
ab

il
it

y

ZO25
ZO26

ZO27
ZO28

ZO29
ZO30

ZO31
ZO32

p
ro

b
ab

il
it

y

ZO33
ZO34

ZO35
ZO36

ZO37
ZO38

ZO39
ZO40

p
ro

b
ab

il
it

y

ZO41
ZO42

ZO43
ZO44

ZO45
ZO46

ZO47
ZO48

p
ro

b
ab

il
it

y

ZO49
ZO50

ZO51
ZO52

ZO53
ZO54

ZO55
ZO56

250 500 750
O

p
ro

b
ab

il
it

y

ZO57

250 500 750
O

ZO58

250 500 750
O

ZO59

250 500 750
O

ZO60

250 500 750
O

ZO61

250 500 750
O

ZO62

250 500 750
O

ZO63

250 500 750
O

ZO64

Distributions of # alerts weighted by priority ZOi
(Oi | S(D)

i ,A
(A)
i) per node i ∈ V

no intrusion intrusion

34/36

Scalable learning through decomposition (Simulation)

Learning curves obtained during training of ppo to find best response
strategies against randomized opponents; red, purple, blue and brown
curves relate to decomposed strategies; the orange and green curves
relate to the non-decomposed strategies.

34/36

Evaluation in the Emulation System (Work in progress!)

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems

35/36

Conclusions
I We develop a framework to

automatically learn security strategies.

I We apply the method to an intrusion
response use case.

I We design a novel decompositional
approach to find near-optimal
intrusion responses for large-scale IT
infrastructures.

I We show that the decomposition
reduces both the computational
complexity of finding effective
strategies, and the sample complexity
of learning a system model by several
orders of magnitude.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation

Target
System

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation &
Learning

36/36

Current and Future Work

Timest

st+1

st+2

st+3

. . .

rt+1

rt+2

rt+3

rrT

1. Extend use case
I Heterogeneous client population
I Extensive threat model of the attacker

2. Extend solution framework
I Model-predictive control
I Rollout-based techniques
I Extend system identification algorithm

3. Extend theoretical results
I Exploit symmetries and causal structure

