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Use Case: Intrusion Response

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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. . .
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Can we use decision theory and learning-based methods to
automatically find effective security strategies?

Proof-of-concept.
Simulation.
Small-scale. (2020)1.

Optimal stopping.
Emulation.
Small-scale.
Static attacker. (2021)2.

Optimal multiple stopping.
Emulation.
Small-scale.
Static attacker. (2022)3

Dynkin game.
Emulation.
Small-scale.
Dynamic attacker. (2022)4

Decomposition.
Emulation.
Dynamic attacker.
Large-scale.
(This work)
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Key challenges: (1) sample complexity; (2) computational complexity.
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Outline
I Use Case & Approach
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System Model

I G = 〈{gw} ∪ V, E〉: directed graph
representing the virtual infrastructure

I V: finite set of virtual components.

I E : finite set of component
dependencies.

I Z: finite set of zones.
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State Model

I Each i ∈ V has a state

vt,i = (v (Z)
t,i︸︷︷︸
D

, v (I)
t,i , v

(R)
t,i︸ ︷︷ ︸

A

)

I System state st = (vt,i )i∈V ∼ St .

I Markovian time-homogeneous
dynamics:

st+1 ∼ f (· | St ,At)

At = (A(A)
t ,A(D)

t ) are the actions.

s1 s2 s3

s4 s5 s4

... ... ...
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Workflow Model

I Services are connected into workflows W = {w1, . . . ,w|W|}.
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Workflow Model
I Services are connected into workflows W = {w1, . . . ,w|W|}.

gw fw idps lb

http
servers

auth
server

search
engine

db

cache

Dependency graph of an example workflow representing a web
application; gw, fw, idps, lb, and db are acronyms for gateway,
firewall, intrusion detection and prevention system, load balancer, and
database, respectively.
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Workflow Model

I Services are connected into
workflows
W = {w1, . . . ,w|W|}.

I Each w ∈ W is realized as a
directed acyclic subgraph (dag)
Gw = 〈{gw} ∪ Vw, Ew〉 of G

I W = {w1, . . . ,w|W|} induces a
partitioning

V =
⋃

wi∈W
Vwi such that i 6= j =⇒ Vwi ∩ Vwj = ∅

Zone a

Zone b Zone c

gw

1 2 3

4 5 6

7

A workflow dag
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Client Model
Client population

. . .Arrival rate λ Departure

Service time µ

. . .

...
...

...

w1 w2 w|W|

Workflows (Markov processes)

I Homogeneous client population
I Clients arrive according to Po(λ), Service times Exp( 1µ)
I Workflow selection: uniform
I Workflow interaction: Markov process
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Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



11/36

Observation Model

I idpss inspect network traffic and
generate alert vectors:

ot ,
(
ot,1, . . . , ot,|V|

)
∈ N|V|0

ot,i is the number of alerts related to
node i ∈ V at time-step t.

I ot = (ot,1, . . . , ot,|V|) is a realization
of the random vector Ot with joint
distribution Z

idps

idps

idps

idps

alerts

Defender

. . .
Attacker Clients

2

1

3 12

4

5

6

7

8

9

10

11

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29
30 31

32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64



12/36

Defender Model
I Defender action:

a(D)
t ∈ {0, 1, 2, 3, 4}|V|

I 0 means do nothing. 1− 4 correspond
to defensive actions (see fig)

I A defender strategy is a function
πD ∈ ΠD : HD → ∆(AD), where

h(D)
t = (s(D)

1 , a(D)
1 , o1, . . . , a(D)

t−1, s
(D)
t , ot) ∈ HD

I Objective: (i) maintain workflows; and
(ii), stop a possible intrusion:

J ,
T∑

t=1
γt−1

(
η

|W|∑
i=1

uW(wi , st)︸ ︷︷ ︸
workflows utility

− (1− η)
|V|∑
j=1

cI(st,j , at,j)︸ ︷︷ ︸
intrusion and defense costs

)

dmz

r&d
zone

admin
zone

Old path
New path

Honeypot App server

Defender

Revoke
certificates

Blacklist
IP

1) Server migration 2) Flow migration and blocking

3) Shut down server 4) Access control
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Attacker Model
I Attacker action: a(A)

t ∈ {0, 1, 2, 3}|V|

I 0 means do nothing. 1− 3 correspond
to attacks (see fig)

I An attacker strategy is a function
πA ∈ ΠA : HA → ∆(AA), where HA
is the space of all possible attacker
histories

h(A)
t = (s(A)

1 , a(A)
1 , o1, . . . , a(A)

t−1, s
(A)
t , ot) ∈ HA

I Objective: (i) disrupt workflows; and
(ii), compromise nodes:

− J

...
Attacker

login attempts
configure

Automated
system

Server

2) Brute-force

1) Reconnaissance

3) Code execution

Attacker Server

TCP SYN
TCP SYN ACK
port open

Attacker Service Server

malicious
request inject code

execution
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The Intrusion Response Problem

maximize
πD∈ΠD

minimize
πA∈ΠA

E(πD,πA) [J ] (1a)

subject to s(D)
t+1 ∼ fD

(
· | A(D)

t ,A(D)
t
)

∀t (1b)

s(A)
t+1 ∼ fA

(
· | S(A)

t ,At
)

∀t (1c)

ot+1 ∼ Z
(
· | S(D)

t+1,A
(A)
t ) ∀t (1d)

a(A)
t ∼ πA

(
· | H(A)

t
)
, a(A)

t ∈ AA(st) ∀t (1e)

a(D)
t ∼ πD

(
· | H(D)

t
)
, a(D)

t ∈ AD ∀t (1f)

where E(πD,πA) denotes the expectation of the random vectors
(St ,Ot ,At)t∈{1,...,T} under the strategy profile (πD, πA).

(1) can be formulated as a zero-sum Partially Observed Stochastic
Game with Public Observations (a PO-POSG):

Γ = 〈N , (Si )i∈N , (Ai )i∈N , (fi )i∈N , u, γ, (b(i)
1 )i∈N ,O,Z 〉
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The Curse of Dimensionality
I While (1) has a solution (i.e the game Γ has a value (Thm

1)), computing it is intractable since the state, action, and
observation spaces of the game grow exponentially with |V|.

1 2 3 4 5

104

105
2

105

|S|
|O|
|Ai |

|V|

Growth of |S|, |O|, and |Ai | in function of the number of nodes |V|
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Intuitively..
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System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently
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Additive Structure Across Workflows (Intuition)

“=”

I If there is no path between i and j in G, then i and j are
independent in the following sense:
I Compromising i has no affect on the state of j .
I Compromising i does not make it harder or easier to

compromise j .
I Compromising i does not affect the service provided by j .
I Defending i does not affect the state of j .
I Defending i does not affect the service provided by j .
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Additive Structure Across Workflows
Definition (Transition independence)
A set of nodes Q are transition independent iff the transition
probabilities factorize as

f (St+1 | St ,At) =
∏
i∈Q

f (St+1,i | St,i ,At,i )

Definition (Utility independence)
A set of nodes Q are utility independent iff there exists functions
u1, . . . , u|Q| such that the utility function u decomposes as

u(St ,At) = f (u1(St,1,At,1), . . . , u1(St,|Q|,At,Q))

and

ui ≤ u′i ⇐⇒ f (u1, . . . , ui , . . . , u|Q|) ≤ f (u1, . . . , u′i , . . . , u|Q|)
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Additive Structure Across Workflows
Theorem (Additive structure across workflows)
(A) All nodes V in the game Γ are transition independent.
(B) If there is no path between i and j in the topology graph G,
then i and j are utility independent.

Corollary
Γ decomposes into |W| additive subproblems that can be solved
independently and in parallel.

π
(w1)
k

π
(w2)
k

π
(w|W|)
k

ot,w1

ot,w2

ot,w|W|

...
⊕

a(k)
w1

a(k)
w2

a(k)
w|W|

a(k)
t
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Additive Structure Across Workflows: Minimal Example

Zone 1 Zone 2

1

2

3

gw

w1
w2

V = {1, 2, 3},
E = {(1, 2)},
W = {w1,w2},
Z = {1, 2}

a) IT infrastructure b) Transition dependencies
St ,At St+1,Ot+1

S(D)
t+1,1S(D)

t,1

A(D)
t,1 S(A)

t+1,1

S(A)
t,1 Ot,1

A(A)
t,1

S(D)
t+1,2S(D)

t,2

A(D)
t,2 S(A)

t+1,2

S(A)
t,2 Ot,2

A(A)
t,2

S(D)
t+1,3S(D)

t,3

A(D)
t,3 S(A)

t+1,3

S(A)
t,3 Ot,1

A(A)
t,3

c) Utility dependencies
St ,At Ut

S(D)
t,1

A(D)
t,1 Ut,1

S(A)
t,1

S(D)
t,2

A(D)
t,2 Ut,2

S(A)
t,2

S(D)
t,3

A(D)
t,3 Ut,3

S(A)
t,3
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Optimal Substructure Within a Workflow
I Nodes in the same workflow are utility

dependent.

I =⇒ Locally-optimal strategies for
each node can not simply be added
together to obtain an optimal strategy
for the workflow.

I However, the locally-optimal strategies
satisfy the optimal substructure
property.

I =⇒ there exists an algorithm for
constructing an optimal workflow
strategy from locally-optimal
strategies for each node.
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

Algorithm 1: Algorithm for combining local strate-
gies

1 Input: Γ: the game,
2 πk : a vector with local strategies
3 Output: (πD, πA): global game strategies
4 Algorithm composite-strategy(Γ,πk)
5 for player k ∈ N do
6 πk ←λ (s(k)

t , b(k)
t )

7 a(k)
t = ()

8 for workflow w ∈ W do
9 for node

i ∈ topological-sort(Vw) do
10 a(k,i)

t ← π
(i)
k (s(k)

t ,b(k)
t )

11 if gw 6→a(k)
t

t i then
12 a(k,i)

t ← ⊥
13 end
14 a(k)

t = a(k)
t ⊕ a(k,i)

t
15 end
16 end
17 return a(k)

t
18 end
19 return (πD, πA)

π
(1)
k

→1
ot,1 a(k)

t,1 a(k),′
t,1

π
(2)
k

→2⊕ot,2 a(k)
t,2 a(k),′

t,2

π
(3)
k

→3⊕ot,3 a(k)
t,3 a(k),′

t,3

...
π

(|Vw|)
k

→|Vw|⊕ot,|Vw|
a(k)

t,|Vw| a(k),′
t,|Vw|

⊕ a(k)
w



25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

(π(i)
D )i∈Vw : local strategies in the same workflow w ∈ W
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,1)
t ∼ π

(1)
D

Step 1; select action for node 1 according to its local strategy

Workflow action:
(a(D,1)

t )



25/36

Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,2)
t ∼ π

(2)
D

Step 2; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 2);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t )
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t )
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,4)
t = 0

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , ·, 0)
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,3)
t ∼ π

(3)
D

Step 3; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 3);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0)
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,5)
t ∼ π

(5)
D

Step 4; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;
move to the next node in the topological ordering (i.e. 5);
select the action for the next node according to its local strategy.

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t )
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
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Dπ
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D

π
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D

π
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D

π
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D

π
(6)
D

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t )
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Algorithm for Combining Locally-Optimal Node Strategies
into Optimal Workflow Strategies

π
(2)
Dπ

(1)
D

π
(3)
D

π
(4)
D

π
(5)
D

π
(6)
D

a(D,6)
t = 0

Step 5; update the topology based on the previous local action;
select action a = 0 for unreachable nodes;

Workflow action:
(a(D,1)

t , a(D,2)
t , a(D,3)

t , 0, a(D,5)
t , 0)
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Computational Benefits of Decomposition
I ∴ we can obtain an optimal (best response) strategy for the

full game Γ by combining the solutions to V simpler
subproblems that can be solved in parallel and have
significantly smaller state, observation, and action spaces.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

101

102

103

104

105

log10 |S| log10 |O| log10 |Ak |
log10 |S(i)| log10 |O(i)| log10 |A

(i)
k |

|V|

4 oom

3 oom

2 oom

Space complexity comparison between the full game and the decomposed
game.
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System Decomposition

To avoid explicitly enumerating the very large state, observation,
and action spaces of Γ, we exploit three structural properties.

1. Additive structure across workflows.
I The game decomposes into additive subgames on the

workflow-level, which means that the strategy for each
subgame can be optimized independently

2. Optimal substructure within a workflow.
I The subgame for each workflow decomposes into subgames on

the node-level that satisfy the optimal substructure property

3. Threshold properties of local defender strategies.
I The optimal node-level strategies for the defender exhibit

threshold structures, which means that they can be estimated
efficiently
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Threshold Properties of Local Defender Strategies.
I The local problem of the defender can be decomposed in the

temporal domain as

max
πD

T∑
t=1

J = max
πD

τ1∑
t=1

J1 +
τ2∑

t=1
J2 + . . . (2)

where τ1, τ2, . . . are stopping times.
I =⇒ (1) selection of defensive actions is simplified; and (2)

the optimal stopping times are given by a threshold strategy
that can be estimated efficiently:

Belief space B(j)
D

Switching curve
Υ

Continuation set
C

Stopping set
S

(1, 0, 0)
j healthy

(0, 1, 0)
j discovered

(0, 0, 1)
j compromised
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Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



29/36

Outline
I Use Case & Approach

I Use case: intrusion response
I Approach: simulation, emulation & reinforcement learning

I System Model
I Discrete-time Markovian dynamical system
I Partially observed stochastic game

I System Decomposition
I Additive subgames on the workflow-level
I Optimal substructure on component-level

I Learning Near-Optimal Intrusion Responses
I Scalable learning through decomposition
I Digital twin for system identification & evaluation
I Efficient equilibrium approximation

I Conclusions & Future Work



30/36

The Target Infrastructure

I 64 nodes. 24 ovs switches, 3
gateways. 6 honeypots. 8 application
servers. 4 administration servers. 15
compute servers.

I 11 vulnerabilities (cve-2010-0426,
cve-2015-3306, cve-2015-5602, etc.)

I 4 zones: dmz, r&d zone, admin
zone, quarantine zone

I 9 workflows

I Management: 1 sdn controller, 1
Kafka server, 1 elastic server.
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Creating a Digital Twin of the Target Infrastructure

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation System

Target
Infrastructure

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Strategy evaluation &
Model estimation

Automation &
Self-learning systems
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System Identification

s1,1 s1,2 s1,3 . . . s1,n
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Emulation System

Target
Infrastructure
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System Identification

Strategy Mapping
π

Selective
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Implementation π

Simulation System
Reinforcement Learning &
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Strategy evaluation &
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Scalable learning through decomposition (Simulation)

Learning curves obtained during training of ppo to find best response
strategies against randomized opponents; red, purple, blue and brown
curves relate to decomposed strategies; the orange and green curves
relate to the non-decomposed strategies.
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Evaluation in the Emulation System (Work in progress!)
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Conclusions
I We develop a framework to

automatically learn security strategies.

I We apply the method to an intrusion
response use case.

I We design a novel decompositional
approach to find near-optimal
intrusion responses for large-scale IT
infrastructures.

I We show that the decomposition
reduces both the computational
complexity of finding effective
strategies, and the sample complexity
of learning a system model by several
orders of magnitude.
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Current and Future Work

Timest

st+1

st+2

st+3

. . .

rt+1

rt+2

rt+3

rrT

1. Extend use case
I Heterogeneous client population
I Extensive threat model of the attacker

2. Extend solution framework
I Model-predictive control
I Rollout-based techniques
I Extend system identification algorithm

3. Extend theoretical results
I Exploit symmetries and causal structure


