Automated Security Response through Online Learning with Adaptive Conjectures¹

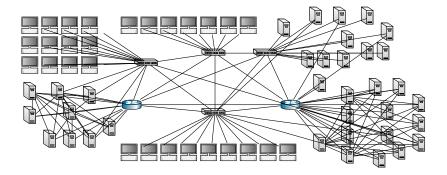
Kim Hammar, Tao Li, Rolf Stadler, & Quanyan Zhu

kimham@kth.se Division of Network and Systems Engineering KTH Royal Institute of Technology

April 5, 2024

¹Kim Hammar, Tao Li, Rolf Stadler, and Quanyan Zhu. Automated Security Response through Online Learning with Adaptive Conjectures. Submitted to the IEEE, https://arxiv.org/abs/2402.12499. 2024.

Challenge: IT Systems are Complex



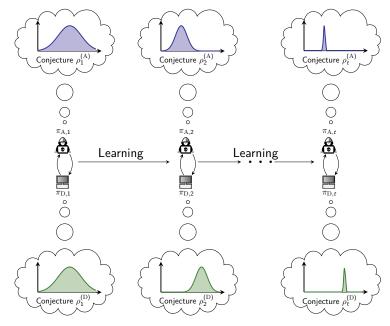
It is not realistic that any model will capture all the details.

 $\blacktriangleright \implies$ We have to work with **approximate models**.

 \implies model misspecification.

How does misspecification affect optimality and convergence?

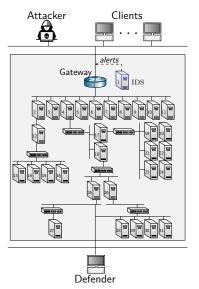
Our Contribution: Conjectural Online Learning



Use Case: Security Response

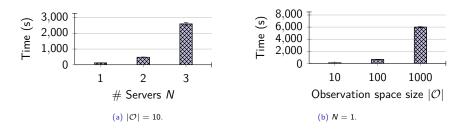
• A **defender** owns an infrastructure.

- Defends the infrastructure by monitoring and response.
- Has partial observability.
- An attacker seeks to intrude on the infrastructure.
 - Wants to compromise specific components.
 - Attacks by reconnaissance, exploitation and pivoting.



Prior Work

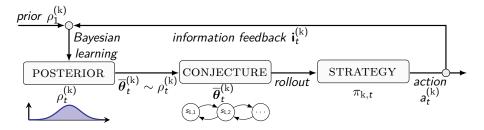
Assumes a stationary model with no misspecification
Limitation: fails to capture many real-world systems.
Focuses on offline computation of defender strategies
Limitation: computationally intractable for realistic models.

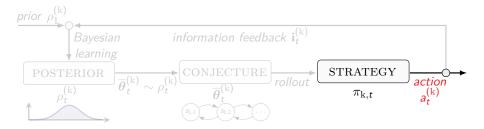


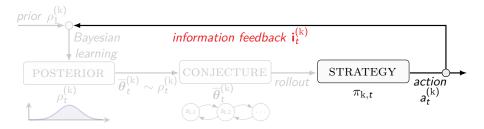
Time required to compute a perfect Bayesian equilibrium with HSVI.

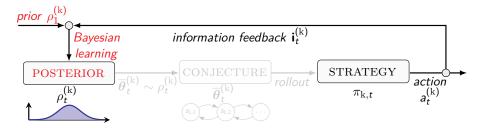
Problem

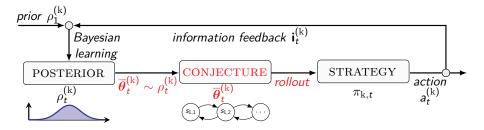
- Partially-observed stochastic game Γ_{θ_t} .
- **Γ**_{$θ_t$} is parameterized by $θ_t$, which is hidden.
- ▶ Player k has a conjecture of θ_t , denoted by $\overline{\theta}_t \in \Theta_k$.
- The player is misspecified if $\theta_t \notin \Theta_k$.
- As θ_t evolves, the player **adapts its conjecture**.
- The player uses the conjecture to update its strategy $\pi_{k,t}$.
- What is an effective method to update conjectures and strategies?

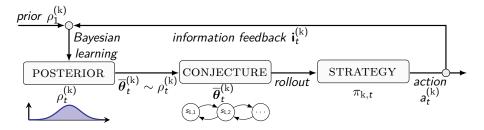




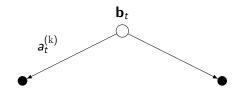


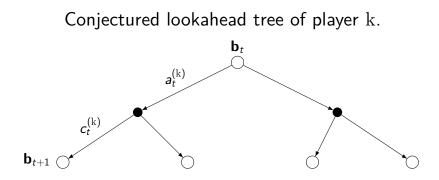


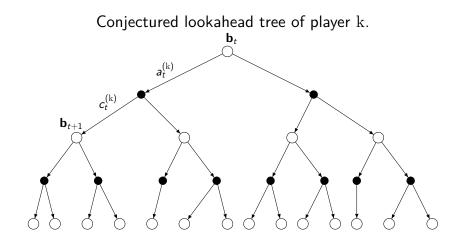




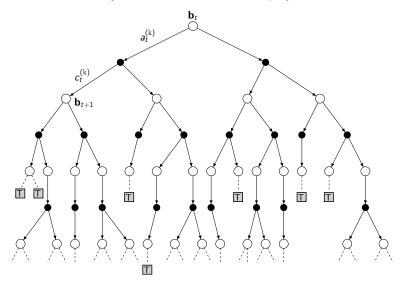
Conjectured lookahead tree of player $\boldsymbol{k}.$



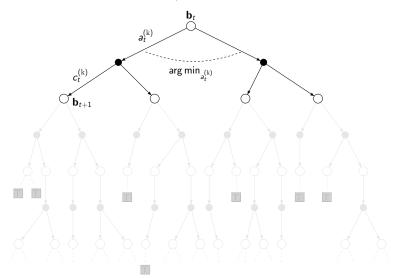




Conjectured lookahead tree of player \boldsymbol{k}



 ℓ_k -step rollout.



 $\ell_k\text{-step rollout}$ based on the conjectured model:

$$\pi_{\mathbf{k},t}(\mathbf{b}_{t}) \in \mathscr{R}(\overline{\boldsymbol{\theta}}_{t}^{(\mathbf{k})}, \mathbf{b}_{t}, \overline{J}_{\mathbf{k}}^{(\pi_{t})}, \ell_{\mathbf{k}}) \triangleq \operatorname*{arg\,min}_{\boldsymbol{a}_{t}^{(\mathbf{k})}, \boldsymbol{a}_{t+1}^{(\mathbf{k})}, \dots, \boldsymbol{a}_{t+\ell_{\mathbf{k}}-1}^{(\mathbf{k})}}$$
(1)
$$\mathbb{E}_{\pi_{t}}\left[\sum_{j=t}^{t+\ell_{\mathbf{k}}-1} \gamma^{j-t} c_{\mathbf{k}}(S_{j}, A_{j}^{(\mathbf{D})}) + \gamma^{\ell_{\mathbf{k}}} \overline{J}_{\mathbf{k}}^{(\pi_{t})}(\mathbf{B}_{t+\ell_{\mathbf{k}}}) \mid \mathbf{b}_{t}\right].$$

• $\overline{\theta}_t^{(k)}$ is the model conjecture.

 \triangleright c_k is the cost function.

▶ $\overline{J}_{k}^{\pi_{t}}$ is the conjectured cost-to-go under strategy profile π_{t} .

b_t is the current belief state.

Performance Guarantees of Rollout (1/2)

Theorem

The conjectured cost of player $k\,\text{'s}$ rollout strategy $\pi_{k,t}$ satisfies

$$\overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},t},\overline{\pi}_{-\mathrm{k},t})}(\mathbf{b}) \leq \overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},1},\overline{\pi}_{-\mathrm{k},t})}(\mathbf{b}) \qquad \quad \forall \mathbf{b} \in \mathcal{B}. \tag{A}$$

Intuition:

The rollout policy improves the base policy in the conjectured model (A).

Performance Guarantees of Rollout (1/2)

Theorem

The conjectured cost of player $k\,$'s rollout strategy $\pi_{k,t}$ satisfies

$$\overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},t},\overline{\pi}_{-\mathrm{k},t})}(\mathbf{b}) \leq \overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},1},\overline{\pi}_{-\mathrm{k},t})}(\mathbf{b}) \qquad \quad \forall \mathbf{b} \in \mathcal{B}.$$
 (A)

Assuming $(\overline{\theta}_t^{(k)}, \overline{\ell}_{-k})$ predicts the game ℓ_k steps ahead, then

$$\|\overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},t},\overline{\pi}_{-\mathrm{k},t})} - J_{\mathrm{k}}^{\star}\| \leq \frac{2\gamma^{\ell_{\mathrm{k}}}}{1-\gamma} \|\overline{J}_{\mathrm{k}}^{(\pi_{\mathrm{k},1},\overline{\pi}_{-\mathrm{k},t})} - J_{\mathrm{k}}^{\star}\|, \tag{B}$$

where J_k^* is the optimal cost-to-go. $\|\cdot\|$ is the maximum norm $\|J\| = \max_x |J(x)|$.

Intuition:

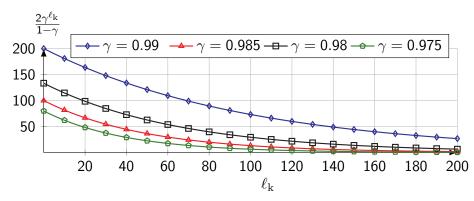
- The rollout policy improves the base policy in the conjectured model (A).
- ► If the conjectured model is wrong but can predict the next ℓ_k steps, then we can bound the performance (B).

Performance Guarantees of Rollout (2/2)

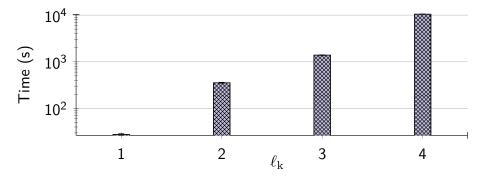
The performance bound

$$\|\overline{J}_{k}^{(\pi_{k,t},\overline{\pi}_{-k,t})} - J_{k}^{\star}\| \leq \frac{2\gamma^{\ell_{k}}}{1-\gamma} \|\overline{J}_{k}^{(\pi_{k,1},\overline{\pi}_{-k,t})} - J_{k}^{\star}\|, \qquad (\mathsf{B})$$

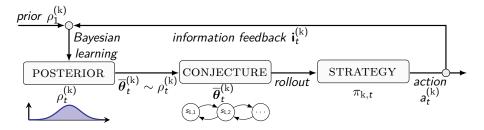
improves superlinearly with the lookahead horizon ℓ_k .



Compute Time of the Rollout Operator



Compute time of the rollout operator for varying lookahead horizons $\ell_k.$



Bayesian Learning to Calibrate Conjectures

 $\rho_t^{(\mathrm{k})}$ is calibrated through **Bayesian learning** as

$$\rho_t^{(k)}(\overline{\boldsymbol{\theta}}_t^{(k)}) \triangleq \frac{\mathbb{P}[\mathbf{i}_t^{(k)} \mid \overline{\boldsymbol{\theta}}_t^{(k)}, \mathbf{b}_{t-1}] \rho^{(k)}(\overline{\boldsymbol{\theta}}_{t-1}^{(k)})}{\int_{\Theta_k} \mathbb{P}[\mathbf{i}_t^{(k)} \mid \overline{\boldsymbol{\theta}}_t^{(k)}, \mathbf{b}_{t-1}] \rho_{t-1}^{(k)}(\mathrm{d}\overline{\boldsymbol{\theta}}_t^{(k)})},$$

where $\mathbf{i}_{t}^{(k)}$ is the **information feedback** at time t.

- We want to characterize $\lim_{t\to\infty} \rho_t^{(k)}$.
 - Does the conjecture converge?
 - Is the conjecture consistent asymptotically?

Asymptotic Analysis of Bayesian Learning

- Let $\nu \in \Delta(\mathcal{B})$ be an occupancy measure over the belief space.
- We say that a conjecture \$\overline{\mathcal{\mathcal{\mathcal{B}}}}\$ is consistent if it minimizes the weighted KL-divergence:

$$\mathcal{K}(\overline{\boldsymbol{\theta}}^{(k)}, \nu) \triangleq \mathbb{E}_{\mathbf{b} \sim \nu} \mathbb{E}_{\mathbf{l}^{(k)}} \left[\ln \left(\frac{\mathbb{P}[\mathbf{l}^{(k)} \mid \boldsymbol{\theta}, \mathbf{b}]}{\mathbb{P}[\mathbf{l}^{(k)} \mid \overline{\boldsymbol{\theta}}^{(k)}, \mathbf{b}]} \right) \mid \boldsymbol{\theta}, \mathbf{b} \right].$$

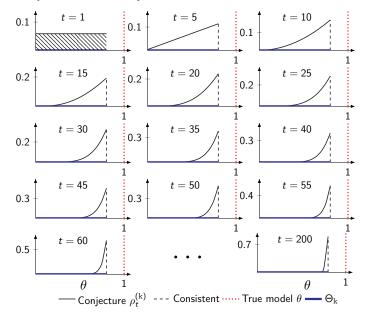
• Let Θ_k^* denote the set of consistent conjectures.

Remark

Due to misspecification, $\overline{\theta}_t^{(k)} \in \Theta_k^*$ does not imply that $\overline{\theta}_t^{(k)}$ equals the true parameter vector θ_t .

Bayesian Learning Converges to Consistent Conjectures

Intuitively, consistent conjectures are "closest" to the true model.



Bayesian Learning is Consistent Asymptotically

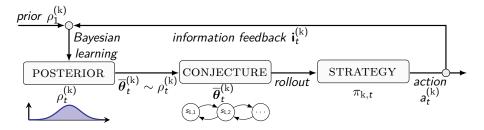
As $t \to \infty$, the conjecture distribution $\rho_t^{(k)}$ concentrates on the set of consistent conjectures.

Theorem

Given certain regularity conditions, the following property is guaranteed by COL.

$$\lim_{t\to\infty}\int_{\Theta_{\mathbf{k}}}\left(K(\overline{\theta},\nu_t)-K^{\star}_{\Theta_{\mathbf{k}}}(\nu_t)\right)\rho_t^{(\mathbf{k})}(\mathrm{d}\overline{\theta})=0$$

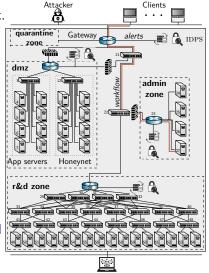
a.s.- $\mathbb{P}^{\mathscr{R}}$, where $K^{\star}_{\Theta_{L}}$ denotes the minimal weighted KL-divergence.



Evaluation - Target Infrastructure

Target infrastructure to the right.

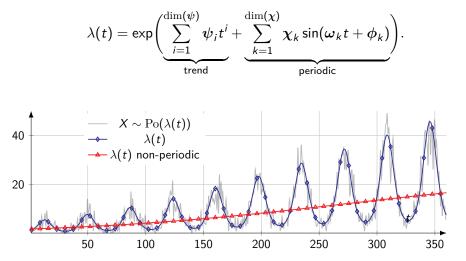
- Defender monitors the infrastructure through IDS alerts.
- Attacker seeks to compromise servers.
- The position of the attacker is unknown.
- Defender can recover compromised servers at a cost.



Model Parameter

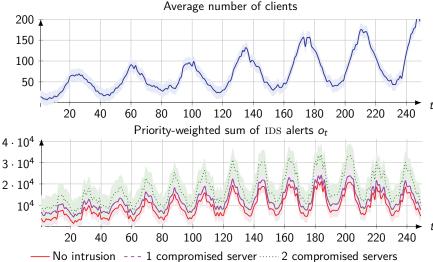
• Let θ_t represent the number of clients.

Clients arrive according to the rate function.

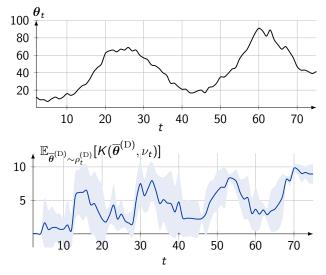


Correlation Between Observations and the Model

We collect measurements from our testbed to estimate the distribution of IDS alerts.



Evaluation of COL (1/3)

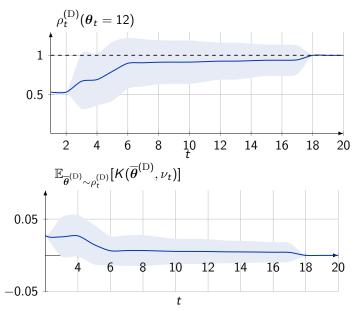


Remark

The conjectures do not converge if θ_t keep changing.

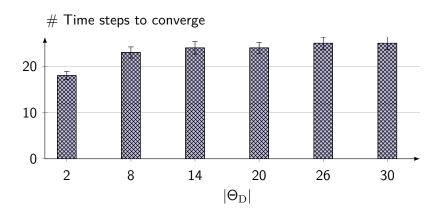
Evaluation of COL(2/3)

Fix the number of clients to be $\theta_t = 12$ for all t.



Evaluation of COL (3/3)

Fix the number of clients to be $\theta_t = 12$ for all t.²³



²Kim Hammar, Tao Li, Rolf Stadler, and Quanyan Zhu. Automated Security Response through Online Learning with Adaptive Conjectures. Submitted to the IEEE, https://arxiv.org/abs/2402.12499. 2024.

³Further evaluations can be found in the paper.

Conclusion

- We introduce a novel game-theoretic formulation of automated security response where each player has a probabilistic conjecture about the game model.
- We present Conjectural Online Learning, a theoretically-sound method for online learning of security strategies in non-stationary and uncertain environments.

