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I M = Markov Decision Process
I Problem reduces to solving Bellman’s equations

ut(ht) = sup
a∈Ast

rt(st , a) +
∑
j∈S

pt(j |st , a) ut+1(ht , a, j)︸ ︷︷ ︸
-cost to go


I Solution methods21: Backward induction, Dynamic

programming (Value iteration, Policy iteration)
21Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. 1st.

USA: John Wiley and Sons, Inc., 1994. ISBN: 0471619779.
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Limitations of the Model-Based Approach

Modeling Challenge

How to model complex systems and cyber attacks accurately?

Scalability Challenge
Models are often impractical due to scale of applications.
I e.g. assume MDP model of cyber range:
M = 〈S,A,Pa

ss′ ,Ra
ss′ , γ, ρ0,T 〉

I Need to solve (curse of modeling22):

V ∗(s) = max
a

∑
s′∈S
Pa
ss′ [Ra

ss′ + γV ∗(s ′)]

|S| = 10170 (Atoms in the universe ≈ 1080)

22Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-Dynamic Programming. 1st. Athena Scientific,
1996. ISBN: 1886529108.



Simulation-Based Approaches

Control Policyπ

Observations Controls

Simulator

(s, a)→ (s ′, r)

I Rather than defining complete model
M = 〈S,A,Pa

ss′ ,Ra
ss′ , γ, ρ0,T 〉 =⇒ define simulator that

can be sampled from.
I Pros: scalable, simple to implement, flexible
I Cons: (same as model-based) is it realistic??



Simulation-Based Example: Intrusion Prevention23

Question

Can effective security-strategies emerge from self-play RL?

I Model network as graph G = 〈N , E〉
I Attack/defense attributes per node Sk = 〈SA

k ,S
D
k 〉

I Simulate outcome of actions as function f (s, a).
I Partially observed two-player Markov game

I Results:
I Challenging learning task but possible
I ε-optimal strategies emerge using our proposed

method
I AR policy, opponent pool, PPO, function approximation

I Strategies are abstract, cannot easily be verified

4/0 0/1 8/0 ?/0?/0?/0

0/0 9/0 8/0

23Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement
Learning and Self-Play”. In: International Conference on Network and Service Management (CNSM
2020) (CNSM 2020). Izmir, Turkey, Nov. 2020.
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Research Questions
I Prior work focused on simulation-based and model-based

approaches
I Assumed to be impractical to interact with real systems
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Research Questions
I How large is this gap? How can we bridge it?
I Take inspiration from early works studying this problem26

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

(s, a)→ (s ′, r)

Simulation

IT infrastructure

ModelM

Gap ?

26Gabriel Dulac-Arnold, Daniel J. Mankowitz, and Todd Hester. “Challenges of Real-World
Reinforcement Learning”. In: CoRR abs/1904.12901 (2019). arXiv: 1904.12901. URL:
http://arxiv.org/abs/1904.12901, Hyrum S. Anderson et al. “Learning to Evade Static PE Machine
Learning Malware Models via Reinforcement Learning”. In: CoRR abs/1801.08917 (2018). arXiv:
1801.08917. URL: http://arxiv.org/abs/1801.08917, Piotr Gawlowicz and Anatolij Zubow. “ns3-gym:
Extending OpenAI Gym for Networking Research”. In: CoRR abs/1810.03943 (2018). arXiv:
1810.03943. URL: http://arxiv.org/abs/1810.03943.
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Research Questions
Assumption

“Assumed to be impractical to interact with real systems”

I Can we question this assumption?
I What is the right balance between model/simulation/real

system?
s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

(s, a)→ (s ′, r)

Simulation

Cyber range
(Emulation)

M
Model



Our Approach

I Goals:
I Framework for learning control tasks in

security
I Connect simulations & models with

practical environment

I What is a good environment for
evaluation?
I Cyber ranges
I Used to evaluate human security experts
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Our Approach

I Goals:
I Framework for learning control tasks in

security
I Connect simulations & models with

practical environment

I What is a good environment for
evaluation?
I Cyber ranges
I Used to evaluate human security experts

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Idea
Need a tool to generate cyber ranges for different control tasks



Generation of Cyber Ranges for Control Tasks

Σ = 〈C,O,S,U , T 〉 Configuration Space

σi

I The configuration space27 defines the networks that can be
generated.

I Controls C (e.g. nmap, firewall configs, metasploit, etc.)
I Operating Systems O (e.g. Kali, Ubuntu 20, etc.)
I Services S (e.g. Kafka, MongoDB, NTP, etc.)
I User types U (e.g. root, non-root, various groups)
I Topologies T (implemented using firewall rules)

27implemented with a set of docker images
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Generation of Cyber Ranges for Control Tasks

172.18.1.0/24 172.18.2.0/24 172.18.3.0/24 172.18.4.0/24 172.18.5.0/24

Σ = 〈C,O,S,U , T 〉 Configuration Space

σi

*** * * K System Space

Ω MDP Space*** * *
s0 s1

a0, r1

M1 = 〈S, . . .〉
s0 s1

a0, r1

M2 = 〈S, . . .〉
s0 s1

a0, r1

M3 = 〈S, . . .〉
s0 s1

a0, r1

M4 = 〈S, . . .〉
s0 s1

a0, r1

M5 = 〈S, . . .〉



System Architecture

state st+1
reward rt+1

action at

Host network x .x .x .x

Virtual Subnetwork 172.18.x .0/24

Linux Containers

Host Hardware

s0 s1 s2 s3 s4 s5
a0, r1 a1, r2 a2, r3 a3, r4 a4, r5

Markov Decision Process



First Evaluation of Framework: Learn to Capture the Flag

Learning task υ1 Learning task υ2

Learning task υ3



System Model (1/3)

I Hidden Markov Model. The
agent estimates the state of the
system based on a sequence of
observations o1, o2, . . . ∈ O

I Infinite Discounted
Time-Horizon. Discrete time,
decision epochs T = N≥0.
Objective:

max
π

E

[ ∞∑
t=1

λt−1r(st , at)

]

s0

o0
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o1

sT

oT

P . . .

System Partial Observability

MDP:

Observations:

Timest
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rrT
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System Model (2/3)

State s

Belief state b(s)

x

Action a

Observation o

Let bt be the belief state at time t

bt(s) = P[st+1 = s|bt ], s =

p1,1 p1,2 . . . sh1
...

... . . .
...

pN,1 pN,2 . . . shN

 ∈ S ∈ RN×34

state estimated based on basis functions {φ1, . . . , φ34} from
observations o. e.g.

φ1(o) = 1port 22 open φ2(o) = 1shell access . . . φ34(o) = #CVEs.



System Model 2/3

bt(s) =

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 a = arg max
a

πθ(a|s)



System Model 2/3

bt =


1 0 . . . 0
1 0 . . . 0
... ... . . .

...
0 0 . . . 0

 at = arg max
a

πθ(a|bt)

= nmap -sP 172.18.3.0/24
Find reachable machines on network



System Model (2/3)

I Let A , {nmapi , metasploiti , niktoi , . . .} be the action
space. A ⊂ B where B is the set of commands of the Bash
command-line.

I Let

r(st+1|at , st ) =


10 if b

#flags
t+1 > b

#flags
t

0 if bt+1 6= bt

−10 otherwise

be the reward function, realizing the agent’s objective to
capture the flags in the system.
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System Model (3/3)

I As |B| >> 1034, we rely on parameteric function
approximation.
I Consider parameterized policies πθ
I where θ ∈ Rd ∧ d << 1034.

I We consider28 the space of Non-Markovian
History-Dependent Time-Homogeneous Mixed Policies
π : B 7→ A, π ∈ ΠHR .

Observations State Estimation Modeling & Prediction Planning Controls

x × y kernel

28B is the set of belief states.
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First Task: υ1

I Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn π∗θ .

π∗θ = arg max
πθ∈Πθ

E

[ ∞∑
t=0

γtrt+1

]
Πθ = {πθ | θ ∈ Rd}

I π∗θ : Finds all flags in the minimum number of steps



A First Attempt of the υ1 Task!
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∫
t

(
Rπ
∗ − Rπθ

)
dt

Regret



Empirical Distribution of Action Costs
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nmap -sV –script=vulscan/vulscan.nse 172.18.3.0/24



Some Assumptions

I With some loss of generality (but not much), we can assume
a Partially Synchronous System

I Access to Eventually Perfect Failure Detector ♦P
I (strong completeness and eventual strong accuracy)

I Eventual upper bounds on communication delays
I Crash-stop failure model extended with omission faults

I This system model enables optimizations:

I Upper bound timeout on scanning operations
I Scan results can be cached for some duration ∆
I Pool SSH, Telnet, FTP, ... connections and re-use between

episodes
I Constrain action space per state s, As ⊂ A
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A Second Attempt of the υ1 Task
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Second Task: υ2

Learning task υ2

I Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn π∗θ .

π∗θ = arg max
πθ∈Πθ

E

[ ∞∑
t=0

γtrt+1

]
Πθ = {πθ | θ ∈ Rd}

I π∗θ : Finds all flags in the minimum number of steps



υ2 Task Training Results
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Third Task: υ3

I Goal: Given no prior knowledge, except the IP of the
subnetwork 172.18.1.0/24, learn π∗θ .

π∗θ = arg max
πθ∈Πθ

E

[ ∞∑
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γtrt+1

]
Πθ = {πθ | θ ∈ Rd}

I π∗θ : Finds all flags in the minimum number of steps



υ3 Task Training Results
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Example of a Learned Policy πθ

bt(s) =

0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 a = arg max
a

πθ(a|s)



Example of a Learned Policy πθ

bt =


1 0 . . . 0
1 0 . . . 0
... ... . . .

...
0 0 . . . 0

 at = arg max
a

πθ(a|bt)

= nmap -sP 172.18.3.0/24
Find reachable machines on network



Example of a Learned Policy πθ

bt =


1 1 . . . 0
1 2 . . . 0
... ... . . .

...
0 0 . . . 0

 at = arg max
a

πθ(a|bt)

= nmap -sU -p- 172.18.3.0/24
Identify open ports



Example of a Learned Policy πθ

bt =


1 1 . . . 1
1 2 . . . 0
... ... . . .

...
0 0 . . . 0


at = arg max

a
πθ(a|bt)

= nmap -sV –script=vulscan/vulscan.nse
172.18.3.2
Identify vulnerabilities



Example of a Learned Policy πθ

bt =


1 1 . . . 1
1 2 . . . 0
... ... . . .

...
0 0 . . . 0


at = arg max

a
πθ(a|bt)

= nmap -p 22 –script ssh-brute
172.18.3.2

Exploit vulnerability



Example of a Learned Policy πθ

bt =


1 1 . . . 1
1 2 . . . 0
... ... . . .

...
0 0 . . . 0

 at = arg max
a

πθ(a|bt)

= ssh u@172.18.3.2

Compromise host



Example of a Learned Policy πθ

bt =


1 1 . . . 1
1 2 . . . 0
... ... . . .

...
0 0 . . . 0

 at = arg max
a

πθ(a|bt)

= find / -name ’flag*.txt’

Search file system



Challenge: Learning with Large Action Spaces
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Action Space Scaling

I Actions scale linearly with the
number of nodes |N |.

I |A| = 25|N |︸ ︷︷ ︸
Node-actions

+ 28︸︷︷︸
Subnet actions

I Large action spaces is a known
challenge for RL

I Reason: Inflates the policy
space Π exponentially
I Assume Markovian

Deterministic Stationary
policies

I |Π| =
(
|S||A|

)T−1
=

((|S|)|A|)T−1
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A Possible Solution: Auto-Regressive Policy
I Idea: Represent action at as sequence of sub-actions (n, a):

1. Select node in the topology to target (n)
2. Select action to apply to node (a)

I Then, π(a|o) = π(a, n|o), which can be decomposed into
π(a|n, o) & π(n|o):

π(a, n|o) = π(a|n, o) · π(n|o) Chain rule

I Reduces the size of the action space from 25|N |+ 28 to
|N |+ 25 + 28
I Still O(n), though.
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4,000
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|A
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x + 25 + 28
25x + 28
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Conclusions and Future Work
I It is challenging to use decision-theoretic methods for

controlling complex systems
I Simulation/Abstract Models are effective to deal with scale,

but...
I We also want to ensure grounding in real world

applications

I We investigate how to combine real security applications with
decision theory/learning theory methods.
I Propose a framework/system for learning control-tasks in

security
I Shown on simple tasks that the approach is feasible
I We seek the right trade-off between real-system

interaction and simulation/models—Open research question

I Future work:
I Many challenges remain..
I Domain randomization and generalization
I More elaborate learning tasks
I Model-based RL
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