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Context of the Paper

Published in KDD’23.
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Context of the Paper

▶ Presents a new Intrusion Detection System (IDS) based on
deep learning.

▶ The proposed IDS achieves state-of-the-art results on several
benchmarks.
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Motivation

▶ Previous state-of-the-art deep learning IDSs perform
inconsistently for detecting different types of attacks.

▶ DDoS attacks are detected reliably but MITM, injection and
backdoor attacks are not detected very well.

▶ =⇒ To improve state-of-the-art, the focus should be on
detecting the MITM/backdoor/injection attacks.
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Why Do Existing IDSs Perform Inconsistently on Different
Attacks?

▶ The authors argue that the poor detection performance of
certain attacks is due to entanglement of features.

▶ The statistical distributions of different features (e.g., network
traffic statistics) look identical to the model.

▶ For DDoS attacks the feature distributions are separated =⇒
Better Detection Performance.
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Overview of 3D-IDS
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Graph Construction (1/2)

▶ Each device i ∈ N in the network is
associated with a level li .
▶ Terminal devices, e.g., PCs or an IoT

device are in level li = 0
▶ Routers and switches are in level

li = 1
▶ For each netflow record (source ip,

destination ip, timestamp t, flow
duration ∆t, flow statistics) the
following edge is created in the graph:

Eij(t) = (vi , li , vj , lj , t, ∆t, Fij(t))

where vi , vj are the nodes, li , lj are the
node levels, and Fij(t) are the flow
statistics
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Graph Construction (2/2)
▶ The sequence of NetFlow records

generates a sequence of edges
{E t}T

t=1 and thus a sequence of
graphs {Gt}T

t=1.
▶ In other words, the graph is dynamic.
▶ The graph at each time-step t is

modeled as a multi-layered graph:

A =



A(1,1) . . . A(1,k) . . . A(1,m)
... . . . ... . . . ...

A(l ,1) . . . A(k,k) . . . A(l ,m)
... . . . ... . . . ...

A(m,1) . . . A(m,k) . . . A(m,m)


where Ai ,i is the intra-layer adjacency
matrix of layer i and Ai ,j where i ̸= j
is the cross-layer adjacency matrix
between layer i and layer j .
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Statistical Disentanglement

▶ Disentangled representation learning is used to disentangle
features, which should improve performance on downstream
tasks such as classification.
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Learning Disentangled Representations
▶ The goal in disentangled representation learning is to learn

a compact representation r(x) of some high-dimensional
feature vector x, where r(x) captures all of the factors of
variation in x.

▶ Hypothesis:
▶ x is a realization of some high-dimensional random variable

X ∈ RN which is generated by K << N independent causal
mechanisms G = (G1, . . . , GK ), which are latent (hidden).

▶ Our goal: we want to learn a representation z = r(x) that
captures only the factors of variation in x.

▶ Downstream tasks, such as classification and prediction should
be much easier given r(x) rather than x.
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Statistical Disentanglement

▶ Factors of variation: dog color, breed, age, background
scenery..
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Learning Disentangled Representations
▶ Assume probabilistic model P(x | z)p(z)

▶ Typically learn the generative model P(x | z) and the posterior
P(z | x) using variational auto-encoders.

▶ Example of a causal disentangled representation:

P(X1, . . . , Xn) =
n∏

i=1
P(Xi | Gi) (1)
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Statistical Heuristic Disentanglement in 3D-IDS
▶ Let F ∈ RK×N denote the matrix of normalized features for a

given edge.
▶ Define a weight matrix w ∈ RK×N .
▶ The disentangelement problem is then formulated as the

following constrained optimization problem

maximize wNFN − w1F1 −
N−1∑
i=2

|2wiFi − wi+1Fi+1 − wi−1Fi−1|

subject to Wmin ≤ wi ≤ Wmax i = 1, 2, . . . , N
N∑

i=1
wiFi ≤ B

wiFi ≤ wi+1Fi+1 i = 1, 2, . . . , N − 1 (A)

where Wmin, Wmax , B are constants and (A) is an ordering
constraint and wiFi is the disentangled representation of
feature i . and hi ,j is the vector of disentangled features for
edge (i , j).
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Statistical Heuristic Disentanglement in 3D-IDS

▶ The effect of solving the constrained optimization problem is
that the feature distributions are shifted in a certain order.

▶ The intuition is that this shift should minimize the mutual
information (overlap) between each two features.

▶ I.e, a rather heuristic form of feature disentanglement.
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Learning Node Embeddings

▶ The embeddings are trained in a supervised manner using
recurrent neural networks.
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Learning Node Embeddings
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Learning Node Embeddings

▶ The embedding of node i at time t is denoted by mi(t).
It is defined by an GRU encoder neural network called “Mem”
which takes as input:

mi(t) = Mem(ci(t), mi(t−)) mi(0) = 0 ∀i

where ci(t) encodes the edge features related to node i at
time t:

ci(t) = Msg(mi(t−), mj(t−), t, ∆t, lI , lj , hi ,j)

where hi ,j is the disentangled edge representation, ∆t is the
edge duration, li , lj are the node levels, and mi(t−) and
mj(t−) are the node-embeddings from the previous time-step.

▶ Here “Msg” is a recurrent neural network.
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Graph Diffusion

▶ Graph diffusion is used to capture how flow features evolve
from the time the flow is started at time t to the time it ends
t + ∆t.
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Diffusion Processes

▶ Diffusion describes the movement of some quantity from
regions of high concentration to lower concentration over
time.

▶ e.g., Heat on an iron rod diffuses from warmer parts of the
rod to colder parts.

▶ This process can be described by the heat equation (a Partial
Differential Equation):

∂

∂t x(u, t) = ∂2

∂u2 x(u, t) (2)

where x(u, t) is the temperature at position u at time t.
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Perona-Malik Diffusion

▶ Perona-Malik (also known as anisotropic) diffusion is a
technique to reduce noise in images.

▶ It is defined by a Partial Differential Equation (PDE):

∂Img(x , y , t)
∂t = div(c(x , y , t)∇Img) (3)

where x , y are the coordinates of the image, t is time, div is
the divergence operator, ∇ is the gradient, and c controls the
diffusion rate.
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Perona-Malik Diffusion

▶ When t = 0 the function that satisfies the PDE is equal to
the original image.

▶ As t increases, the image becomes blurrier while still
maintaining important characteristics/edges in the image,
which has the effect of removing noise.

▶ That is, Perona-Malik diffusion can be used to remove noise
from images without blurring edges.
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Perona-Malik Diffusion

▶ The diffusion rate function c works as an “edge stopper”.

∂Img(x , y , t)
∂t = div(c(x , y , t)∇Img) (4)

▶ It satisfies c(x) → 0 as x → ∞
▶ Which means that the diffusion (the blurring) is stopped at

sharp edges of the image
▶ When x is not an edge, c(x) > 0, which means that the

diffusion causes blurring.
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Perona-Malik Diffusion Applied to Graphs

▶ Since a graph can be defined by its adjacency matrix and
feature matrix, similar diffusion equations that are applied in
image processing can be used on graphs.

▶ For example, if there is a high traffic load on node i in a
computer network at time t, we can use graph diffusion and a
PDE to describe how the network load will spread through the
neighbors of i until time t + ∆t
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Graph Diffusion in 3D-IDS

▶ Given the node embeddings m1(t), m2(t), . . . and the edges
E t , the new graph Gt is fused with the previous graphs
Gt−1, Gt−2, . . . through a graph diffusion method, which
fuses the topological information of the evolving graph.

▶ They utilize the Perona-Malik diffusion form image processing,
which is defined by the following partial differential equation:

∂x(u, t)
∂t = div[g(|∇x(u, t)|)∇x (u, t)]

with initial condition x(u, 0) = c.

▶ Here x(u, t) represents the node embedding of a given node
at time t after the update u.
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Graph Diffusion 3D-IDS

▶ Applying the gradient and divergence operators to the graph,
one can obtain from spectral graph theory that the PDE can
be expressed as:

∂Xt = −MT σ(MXKT )S(MXKT )K (5)

where X is the matrix with the node embeddings, K is a
transformation matrix, S is a matrix with coefficients
computed by a neural network, and σ(x) = exp(−|x |).

▶ A solution to the above PDE is approximated using the
Runge-Kutta numerical methods

▶ The obtained solution of the PDE then represents the node
embeddings at time t + ∆t, i.e., Xt+∆t .
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Intrusion Detection and Attack Classification

▶ Finally, after computing the updated node
embeddings Xt+∆t they are fed into two
feed-forward neural networks

▶ The first neural network is a binary classifier that
predicts whether an intrusion occurs

▶ The second neural network predicts the attack type
▶ The loss function is defined as

Lint = −
m∑

i=1
log(1 − pnor ,i) + log(patt,i) +

m∑
i=1

K∑
j=1

yi ,k log(pi ,k)

where m is the batch size, K is the number of
attack types and pnor ,i is the predicted probability
of no intrusion.
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Regularization and Representational Disentanglement
▶ Two regularization terms are added to the loss function during

the supervised training:
1. A term to incentivize disentangled node embeddings:

LDis = 1
2 ||X (t)X (t−)T − I||2F (6)

I.e the norm of the matrix product of the node representations,
which should ensure that the node representations are close to
orthogonal (i.e that their dot products are zero).

2. A term to incentivize smooth updates:

Lsmooth =
T∑

t=0
||Xt+∆t − Xt ||2 (7)

▶ The final loss is thus:

L = Lint + αLSmooth + βLDis (8)

where α and β are constants.
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Comparison with State-of-the-art in terms of Binary
Intrusion Detection

▶ State-of-the-art results on all metrics on five datasets (!).
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Comparison with State-of-the-art in terms of Attack Type
Classification

▶ State-of-the-art results on all metrics except 2(!).
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Ablation Study

▶ All modules of the deep learning system improves
performance.

▶ Graph diffusion improves performance the most
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Conclusions

▶ This paper presents a novel IDS based on deep learning called
3D-IDS

▶ 3D-IDS uses two levels of feature disentanglement and graph
diffusion in combination with deep neural networks.

▶ 3D-IDS achieves state-of-the-art results on five
benchmarks.
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Discussions

▶ Impressive results, what are the drawbacks?

▶ Could be overfitting on these five benchmarks, system is a bit
overengineered to beat STOTA.

▶ Novel use of diffusion processes, can it be used for other tasks
in cyber security?

▶ Problems:
▶ Kitchen sink of heuristics.
▶ Poor description of related work.
▶ Usage of representation disentanglement is inconsistent with

theory and literature.
▶ Definition of the SMT problem for statistical disentanglement

is incomplete.

▶ Questions?


