
1/28

Reinforcement Learning-based Hierarchical Seed
Scheduling for Greybox Fuzzing

NSE ML+Security Reading Group

Kim Hammar

kimham@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

March 18, 2022

2/28

The Context and Key Points of the Paper
I The paper proposes a new architecture for greybox fuzzing

I Uses hierarchical coverage metric
I Models seed scheduling as an MAB problem
I Learns scheduling of seeds through reinforcement learning

3/28

Outline
I Background

I Greybox fuzzing
I Evaluation datasets: Cyber Grand Challenge
I Multi-armed bandits

I The Paper
I Approach & Contributions
I Proposed architecture
I Evaluation

I Strong points and weak points of the paper and
Discussion
I Strong points
I Limitations of the paper
I Discussion about future work

I Conclusions

4/28

Background: Fuzzing

I Fuzzing is a method to test software, systems, networks, etc.
I Generates random inputs to the program to find

crashes/bugs/memory leaks etc.

5/28

Comparison to other types of Tests
I Unit tests and integration tests define an execution of the

program and verifies its result with assertions.
I In fuzzing, we don’t specify the execution nor the verification

process
I We run the program with random inputs and checks if it

crashes
I Property-based tests specify properties that should be true

for classes of inputs. For exampe:
x + y ∈ D ∀x ∈ X , y ∈ Y.
I Many similarities with fuzzing
I Fuzzing in general is less structured and more random (i.e.

don’t even specify X and Y)

5/28

Comparison to other types of Tests
I Unit tests and integration tests define an execution of the

program and verifies its result with assertions.
I In fuzzing, we don’t specify the execution nor the verification

process
I We run the program with random inputs and checks if it

crashes
I Property-based tests specify properties that should be true

for classes of inputs. For exampe:
x + y ∈ D ∀x ∈ X , y ∈ Y.
I Many similarities with fuzzing
I Fuzzing in general is less structured and more random (i.e.

don’t even specify X and Y)

6/28

Different Types of Fuzzing
I This paper focuses on greybox fuzzing:

I Use instrumentation to measure how the input causes the
program to exercise different code paths

I Try to generate inputs that maximize coverage
I Other types of fuzzing:

I Black box: no instrumentation (random search)
I White box: leverage static program analysis to generate inputs

that maximize coverage

6/28

Different Types of Fuzzing
I This paper focuses on greybox fuzzing:

I Use instrumentation to measure how the input causes the
program to exercise different code paths

I Try to generate inputs that maximize coverage
I Other types of fuzzing:

I Black box: no instrumentation (random search)
I White box: leverage static program analysis to generate inputs

that maximize coverage

7/28

Background: Greybox Fuzzing
1. Start with an initial seed
2. Generate test inputs from the seed using some algorithm
3. Run the tests and measure coverage and bugs
4. If you improve coverage or find a bug, add the test case as a

new seed
5. Repeat

8/28

Background: Greybox Fuzzing
I Generation of inputs (genetic process)::

I Start with some seed.
I Generate new inputs through mutation and crossover.
I Test the new inputs
I Save inputs with strongest fitness as new seeds
I Most common fitness function: edge coverage
I Measure “hit counts” on branches in the code

9/28

Background: Greybox Fuzzing

I Trade-Off:
I Using a more sensitive/detailed coverage metric, the fuzzing

can find more bugs by saving more critical “waypoints”
I However this also leads to many more potential inputs to test

(seeds)

10/28

Background: Greybox Fuzzing
I Problem: may have to run the program thousands of times
I Cannot try all possible seeds (Seed exploision)
I Need some algorithm to schedule the seeds (i.e prioritize

which seeds to use first)
I This paper proposes a novel approach for dealing with this

problem.

11/28

Background: Other types of Fuzzing

I Seed-based, aka mutational-based fuzzing is not the only type
of fuzzing..

I Also exist generational fuzzing, aka model-based fuzzing.

I Mutational fuzzing incrementally performs arbitrary
mutations to the data (does not take into account the
structure of the data).

12/28

Background: Other types of Fuzzing

I Generational fuzzing mutates the data according to some
specific structure (e.g. described by a grammar). Does not
generate inputs incrementally but rather generates inputs from
scratch every time.

13/28

Background: Cyber Grand Challenge (CGC)
I To evaluate their fuzzing techniques, the CGC dataset is used.
I The CGC dataset is a dataset of software programs with

mainly memory corruption vulnerabilities, .e.g
buffer-overflows and memory disclosures.

I Written in C or C++ for the DECREE operating system.

Competition Framework

Team 2Team 4

Team 1

Team 3

Patches, Exploits
Network Captures, Exploits, Tests, Scores

14/28

Example: Heartbleed

I A security bug in the OpenSSL library
I Released 2012
I Disclosed 2014

I Affected software: most implementations of TLS
I How it works:

I A sender in OpenSSL can send a heartbeat msg
with payload+length

I The receiver allocates a memory buffer according to
the length without verifying the length

I The receiver writes the payload to the buffer
I The receiver sends back the content of the buffer to

the sender
I Since the buffer size can be larger than the payload

(it is not verified) the sender may send back more
data than the original payload - possibly sensitive
data.

15/28

Background: Multi-arm Bandits

I Finite set of actions (arms) A
I Each time an action is chosen, some reward r ∈ R is received.
I The rewards follow an unknown i.i.d distribution p(·|a).
I Denote the expected reward of a as q(a) = E[r |a]
I Goal: learn in an online fashion to select the actions that

minimize the regret:

RT = q∗T︸︷︷︸
Optimal reward

−
T∑

t=1
rt︸ ︷︷ ︸

Our reward

I Algorithm should have sub-linear regret, i.e. limT→∞ RT = 0

16/28

Background: Multi-arm Bandits

1: procedure UCB Multi-Armed Bandit
2: N(a)→ 0,Q(a)→ 0 . Initialization
3: for t ∈ {1, . . .T} do
4: a = arg maxa Q(a) + c

√
log t
N(a)

5: r ← reward(a)
6: N(a)← N(a) + 1
7: Q(a)← Q(a) + 1

N(a)(r − Q(a))
8: end for
9: end procedure

I Uses principle of optimism in the face of uncertainty
I Greedily select actions based on highest expected reward or if

the actions we have not been tried before

17/28

Background: Multi-arm Bandits

I The term:
√

log t
N(a) comes from Hoeffding’s inequality:

P[X̄ ≤ E[X̄] + ε] ≤ e−2nε2

I We use Hoeffding’s inequality to bound empirical reward Q(a)
from actual mean Q∗(a):

P[Q(at) ≤ Q∗(at) + ε] ≤ e−2nε2 (1)

I Want to select ε such that this inequality holds with a some
probability, e.g. ≤ δ

2

18/28

Background: Multi-arm Bandits
I We get:

e−2nε2 = δ

t2

=⇒ −2nε2 = ln(δt2)

=⇒ ε2 = 1
2n ln(− δ

t2)

=⇒ ε2 = 1
2n ln(t2

δ
)

=⇒ ε2 =
ln(t2

δ)
2n

=⇒ ε =

√
ln(t2

δ)
2n

I Continuing this derivation we obtain the UCB term, which we
can show gives sub-linear regret.

19/28

The Paper Approach and Contributions

I Approach:
I Use hierarhical seed generation and multi-level coverage metric
I Multi-level coverage metric allows to organize seeds for

efficient scheduling
I Model seed scheduling as a multi-armed bandit problem
I Use reinforcement learning to find effective seed scheduling

strategy

I Contributions:
I New hierarhical coverage-metric function to instrument the

fuzzing
I Extensive evaluation of a standard multi-armed bandit

algorithm

19/28

The Paper Approach and Contributions

I Approach:
I Use hierarhical seed generation and multi-level coverage metric
I Multi-level coverage metric allows to organize seeds for

efficient scheduling
I Model seed scheduling as a multi-armed bandit problem
I Use reinforcement learning to find effective seed scheduling

strategy

I Contributions:
I New hierarhical coverage-metric function to instrument the

fuzzing
I Extensive evaluation of a standard multi-armed bandit

algorithm

20/28

Multi-Level Coverage

I A metric that consists of a sequence of coverage
merasurements on different levels
I Edge coverage
I Function coverage
I Hamming distance of comparison operands

I A way to organize coverage and seeds
I Trade-off sensitive coverage metrics and more coarse-grained

coverage metrics
I I.e how long does the fuzzer mutate a given seed before giving

up and scheduling other seeds? Exploitation vs exploration

21/28

Incremental Seed Clustering

I Use a clustering algorithm to group seeds that are similar.

I Similar in terms of coverage.

I A way to organize the seeds to facilitate intelligent scheduling
of seeds.

22/28

Hierarchical Seed Scheduling

I Seed scheduling: seek path from root to leaf node
I Leaf node is selected as next seed to schedule

23/28

Modeling Seed Scheduling as a Multi-Armed Bandit

I Model:
I Action: select seed to schedule
I Reward: progress in terms of coverage/bugs
I Balance exploitation/exploration

I Training:
I Select nodes to schedule following the UCB1 algorithm
I Reward seed selection based on how much progress was made

in terms of coverage/bugs

SeedReward(s, l , t) = max
F

rareness[F] (2)

Reward(al , t) = n−l+1

√∏
k

SeedReward(s, k, t) (3)

24/28

Evaluation

I Outperforms state-of-the-at on the CGC dataset
I Does not outperform other fuzzers on other benchmarks

25/28

Strong points of the Paper

I Extensive evaluation with clear benchmarks
I Outperforms state-of-the-art on the CGC dataset
I Does not outperform other fuzzers on other benchmarks

I Clever idea with multi-level coverage and seed clustering
I Deserves further study

26/28

Limitations of the Paper

I Modeling of the multi-armed bandit
I Hard to follow
I Lacks details and formal treatement

I Evaluation
I No evaluation of the reinforcement learning algorithms

27/28

Conclusions

I Greybox fuzzing

I Use multi-level coverage metric and incremental seed
clustering to organize sseds

I Schedule seeds based on a hierarchical structure

I Use multi-armed bandit to model the scheduling problem

I Learn scheduling strategy using reinforcement learning

28/28

Discussion

I Is fuzzing a MAB problem or MDP? Trade-offs?

I Opinions of the paper?

I Applications to your research?

