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Challenges: Evolving and Automated Attacks
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> Challenges:

» Evolving & automated attacks
» Complex infrastructures
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Goal: Automation and Learning

» Our Goal:

» Automate security tasks
» Adapt to changing attack methods
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Approach: Game Model & Reinforcement Learning

» QOur Approach:

» Model network attack and defense as
games.

» Use reinforcement learning to learn
policies.

» Incorporate learned policies in
self-learning systems.
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State of the Art

» Game-Learning Programs:

» TD-Gammon, AlphaGo Zero!, OpenAl Five etc.
» —> Impressive empirical results of RL and self-play

IDavid Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354— URL: http://dx.doi.org/10.1038/nature24270.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

State of the Art

» Attack Simulations:

» Automated threat modeling® and intrusion detection etc.
» —> Need for automation and better security tooling

Spontus Johnson, Robert Lagerstrom, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. 1SBN: 9781450364485. DOI:
10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

State of the Art

» Mathematical Modeling:
> Game theory!!
» Markov decision theory, dynamic programming!?
» — Many security operations involves
strategic decision making

UTansy Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA
Cambridge University Press, 2010. 1SBN: 0521119324,

2Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. |. Belmont, MA, USA: Athena
Scientific, 2005.


http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

Our Work

» Use Case: Intrusion Prevention

» Our Method:

» Emulating computer infrastructures
» System identification and model creation
» Reinforcement learning and generalization

» Results:

» |earning to Capture The Flag
> Learning to Prevent Attacks (Optimal Stopping)

» Conclusions and Future Work



Use Case: Intrusion Prevention

» A Defender owns an infrastructure

» Consists of connected components

» Components run network services

» Defender defends the infrastructure
by monitoring and active defense

> An Attacker seeks to intrude on the
infrastructure

» Has a partial view of the
infrastructure

» Wants to compromise specific
components

P Attacks by reconnaissance,
exploitation and pivoting
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Our Method for Finding Effective Security Strategies
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Emulation System

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.



Emulation SyStem ¥ Configuration Space

e e e
172.18.61.0/24 172.18.19.0/24 172.18.4.0/24
Emulated Infrastructures

Emulation

A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

» The set of virtualized configurations define a
configuration space ¥ = (A, O,S, U, T, V).
> A specific emulation is based on a configuration o; € ¥.



Emulation: Execution Times of Replicated Operations

Action execution times (costs) Action execution times (costs)
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» Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k — 10M.

» — Infeasible to optimize in the emulation system
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From Emulation to Simulation: System Identification

Emulated Network
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From Emulation to Simulation: System Identification

Emulated Network Abstract Model

» Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.

» Defines the static parts a POMDP model.



From Emulation to Simulation: System Identification

Emulated Network Abstract Model POMDP Model

- H (S, A,P,R,~,0,Z)
e

» Dynamics Model (P, Z) ldentified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

n(b, a, b)

M(b|b,a) & ——22 "7
(b]b,2) > n(s,aj’)



System ldentification: Estimated Dynamics Model

Estimated Emulation Dynamics

Alerts Alert Priorities Severe Alerts Warning Alerts
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System ldentification: Estimated Dynamics Model

P[|(bi5 ai)]

P[|(bi5 ai)]
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System ldentification: Estimated Dynamics Model
IDS Dynamics

IDS Alerts Severe IDS Alerts
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Policy Optimization in the Simulation System
using Reinforcement Learning

Agent

Environment




Policy Optimization in the Simulation System

using Reinforcement Learning

> Goal:
» Approximate 7* = arg max_ E {Z;l fyt’lrprl}
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Policy Optimization in the Simulation System

using Reinforcement Learning

» Learning Algorithm:
» Represent 7 by 7y
> Define objective J(0) = E, {Z;l Y (s, at)}
> Maximize J(6) by stochastic gradient ascent

VoJ(0) =E,,

Vo log mg(als) A™ (s, a)]
—_——— —

actor critic
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Policy Optimization in the Simulation System
using Reinforcement Learning

» Domain-Specific Challenges:

>

>
>
>
>

Partial observability

Large state space

Large action space

Non-stationary Environment due to attacker
Generalization

e+

St+1|

Environment
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Policy Optimization in the Simulation System
using Reinforcement Learning

e+
Environment
St+1l

» Finding Effective Security Strategies through Reinforcement
Learning and Self-Play?

» Learning Intrusion Prevention Policies through Optimal
Stopping®

?Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). lzmir, Turkey, Nov. 2020.

bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv
2106.07160 [cs.AI].


https://arxiv.org/abs/2106.07160
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The Target Infrastructure

> Topology:

> 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

» Services

> 3 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2
Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

» RCE Vulnerabilities

> 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1
CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

» 5 Brute-force vulnerabilities

» Operating Systems

> 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1
Kali

» Traffic

P Client 1: HTTP, SSH, SNMP, ICMP
»  Client 2: IRC, PostgreSQL, SNMP
»  Client 3: FTP, DNS, Telnet

Attacker Clients
[

alerts

Defender

Target infrastructure.




The Attacker Model: Capture the Flag (CTF)

» The attacker has T time-steps to collect
flags, with no prior knowledge

» It can connect to a gateway that exposes
public-facing services in the infrastructure.

» |t has a pre-defined set (cardinality ~ 200)
of network/shell commands available,
each command has a cost

» To collect flags, it has to interleave
reconnaissance and exploits.

» Objective: collect all flags with minimum cost

T T T T T

B =

) ﬂﬁ ) ,E
N

¥
b

==
Defender

Target infrastructure.




The Formal Attacker Model: A Partially Observed MDP

» Model infrastructure as a graph G = (N, E)
» There are k flags at nodes C C N (a) Emulated Infrastructure
» N; € N has a node state s; of m attributes
>

Network state

s={sa, 5| i€ N} € RWIxm+IN]
Attacker observes o” C s (results of
commands)

v

(b) Graph, Model
No, So

My, St Na, S

N6, S6




The Formal Attacker Model: A Partially Observed MDP

(a) Emulated Infrastructure

» Action space: A ={af\,...,ap}, af (5) Grapt, Mocel
0, 20
(commands)

> V(s,a) € A xS, there is a probability VT/S-’(X) S
of failure & a probability of detection
A,(x
ol det(si) - 5™)
» State transitions s — s’ are decided by a
discrete dynamical system s’ = F(s, a)

Ns, S

Ne. S6




Learning to Capture the Flags: Training Attacker Policies

% Flags 1 per episode P[d d] Reward per episode
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0.75: o i
504 0.50 r\\/\ —100 St
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Learning curves (training performance in simulation and evaluation
performance in the emulation) of our proposed method.



Learning Security Policies through Optimal Stopping
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Learning Security Policies through Optimal Stopping

time-step t =

Episode
A T
1Intru5|on event Intrusion ongoing
—_—A
L | | | | | SN | | | t
[I— T I T T
: t=T

Early stopping times

| Stopping times that
interrupt the intrusion

Attacker Clients
2

Defender

> Intrusion Prevention as Optimal Stopping Problem:
» Defender observes the infrastructure (IDS, log files, etc.).



Learning Security Policies through Optimal Stopping

Attacker Clients
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Early stopping times : - ;
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Defender

> Intrusion Prevention as Optimal Stopping Problem:

» An intrusion occurs at an unknown time.



Learning Security Policies through Optimal Stopping

time-step t =
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Defender

> Intrusion Prevention as Optimal Stopping Problem:

» The defender can “stop” the intrusion.



Learning Security Policies through Optimal Stopping

time-step t =
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> Intrusion Prevention as Optimal Stopping Problem:

» Stopping shuts down the service provided by the infrastructure.



Learning Security Policies through Optimal Stopping
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> Intrusion Prevention as Optimal Stopping Problem:

» — trade-off two objectives: service and security



Learning Security Policies through Optimal Stopping
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> Intrusion Prevention as Optimal Stopping Problem:

» Based on the observations, when is it optimal to stop?



Learning Security Policies through Optimal Stopping

time-step t =

Episode
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> Intrusion Prevention as Optimal Stopping Problem:

» Defender observes the infrastructure (IDS, log files, etc.).
An intrusion occurs at an unknown time.

The defender can “stop” the intrusion.

= trade-off two objectives: service and security

| 2
| 2
» Stopping shuts down the service provided by the infrastructure.
»
»

Based on the observations, when is it optimal to stop?



A Partially Observed MDP Model for the Defender

» States:

» Intrusion state i; € {0,1}, terminal

state ().
continue continue
intrusion

starts

intrusion
ends



A Partially Observed MDP Model for the Defender

» Observations:
> Severe/Warning IDS Alerts
(Ax,Ay), Login attempts Az.
fxvz(Dx, Ay, Azlig, Iz, t)



A Partially Observed MDP Model for the Defender

> Actions:
> “Stop” (S) and “Continue” (C)



A Partially Observed MDP Model for the Defender

> Rewards:

» Reward: security and service.

) . Reward function R% I ~ Ge(p=0.2)
Penalty: false alarms and intrusions,

1 20 10 60 80 100 10, 20
time-step ¢ intrusion start time i



A Partially Observed MDP Model for the Defender

» Transition probabilities:

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)



A Partially Observed MDP Model for the Defender

» Objective and Horizon:
> maxE,, [Z;‘”l r(se,ar)|, Tg



A Partially Observed MDP Model for the Defender

> States:
» Intrusion state iy € {0,1}, terminal
state ().
» Observations:
> Severe/Warning IDS Alerts
(Ax,Ay), Login attempts Az.
fxyz(AX, Ay, A2|it, /t, t)

continue continue
intrusion
starts

intrusion

» Actions: ends
> “Stop” (S) and “Continue” (C)

> Rewards:
» Reward: security and service. — .

Penalty: false alarms and intrusions,,

» Transition probabilities: o Sprovard
=== Intr

» Bernoulli process (Q;)/_; ~ Ber(p)
defines intrusion start I; ~ Ge(p)

» Objective and Horizon:
> maxE,, [Z;‘”l r(se,ar)|, Tg

0.0(
1 20 10 60 80 100

time-step ¢ intrugion start the it



Threshold Property of the Optimal Defender Policy (1/4)

Theorem
The optimal policy 7 is a threshold policy of the form:

S (stop) if b(1) > o
C (continue) otherwise

(600 - {

where o is a unique threshold and
b(1) = P[s; = 1]a1, 01, .., at-1, 0t].



Threshold Property of the Optimal Defender Policy (1/4)

Theorem
The optimal policy 7 is a threshold policy of the form:

S (stop) if b(1) > o
C (continue) otherwise

w(o00) - {

where o is a unique threshold and
b(1) = P[s; = 1]a1, 01, .., at-1, 0t].

» To see this, consider the optimality condition (Bellman eq):

7 (b(1)) = arg max lr(b(l)7 a) + Z Plo|b(1), a]V* (b3(1))

acA 0c®



Threshold Property of the Optimal Defender Policy (2/4)

» We use A = {S, C} and derive:

ocO
€

7*(b(1)) = argmax r(b(;)7 S),r(b(1), C) Z Plo]b(1), C]V* (b5 (1))

> w is the expected reward for stopping and ¢ is the expected
cumulative reward for continuing



Threshold Property of the Optimal Defender Policy (2/4)

» Expanding the expressions and rearranging terms, we derive
that it is optimal to stop iff:

b(1) >

110 + Zoeo v* (b§(1)) <pz(o, 1,C)+ (1= p)Z(o0,0, C))

300 + Z v* (bf(l)) (pz(o, 1,C)+ (1= p)Z(0,0,C) — Z(o, 1, C))

el

Threshold: a1y



Threshold Property of the Optimal Defender Policy (3/4)

» Thus 7* is determined by the scalar thresholds ay).
> it is optimal to stop if b(1) > )



http://www.jstor.org/stable/169635

Threshold Property of the Optimal Policy (3/4)

» The stopping set is:

7 = {b(1) € [0.1]: (1) = @)}



http://www.jstor.org/stable/169635

Threshold Property of the Optimal Defender Policy (3/4)

» Since V*(b) is piecewise linear and convex!®

15Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282-304. 1ssN: 0030364X, 15265463. URL
http://www. jstor.org/stable/169635.


http://www.jstor.org/stable/169635

Threshold Property of the Optimal Defender Policy (3/4)

> Since V*(b) is piecewise linear and convex!®, . is also
convex!” and has the form [a*, 3*] where 0 < o* < 5* < 1.

Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282-304. 1ssN: 0030364X, 15265463. URI
http://www. jstor.org/stable/169635.

17Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.


http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104

Threshold Property of the Optimal Defender Policy (3/4)

» When b(1) =1 it is optimal to take the stop action S:

(1) = argmax 100,90+ > Z(0,1,C)V*(bS(1)) | = S
ocO

» This means that g* =1



http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104

Threshold Property of the Optimal Defender Policy (4/4)

» As the stopping set is . = [o*, 1] and b(1

) € [0 1]
» We have that it is optimal to stop if b(1) > «



Threshold Property of the Optimal Defender Policy (4/4)

» Hence, Theorem 1 follows:

S (stop) if b(1) > a*
C (continue) otherwise

(600 - {



Static Attackers to Emulate Intrusions

Time-steps t Actions

1/ ~ Ge(0.2)  (Intrusion has not started)
I+ 1=+ 7 RECON, brute-force attacks (SSH,Telnet,FTP)
on /V27 /\/47 Nlo, IOgin(N27 /V47 NIO):
backdoor( /N>, Ny, N1g), RECON
I + 8- + 11 CVE-2014-6271 on N7, SSH brute-force attack on Ny,
login (Ni7, Ni2), backdoor(Ny7, Ni2)
I +12-X +16 CVE-2010-0426 exploit on Ni», RECON
SQL-Injection on Njig, login(Nig), backdoor(Nig)
It +17-I; +22 RECON, CVE-2015-1427 on Nas, login(/Nos)
RECON, CVE-2017-7494 exploit on N7, login(Na7)

Table 1: Attacker actions to emulate an intrusion.



Learning Security Policies through Optimal Stopping

00— Reward per episode Episode length (steps) Plintrusion interrupted] Plearly stopping] Uninterrupted intrusion ¢
1.0 .
8
0.8 059
1007/ o+ . 3
0.6
0.6
4
0 0.4
0.44 2
21 0.2
—100+ 0.2+
T T T T T T T T T 0.0 T u T 1
0 1000 2000 3000 4000 O 1000 2000 3000 4000 O 1000 2000 3000 4000 O 1000 2000 3000 4000 O 1000 2000 3000 4000
# policy updates # policy updates # policy updates # policy updates # policy updates
—a— Learned 7y vs NOISYATTACKER —e— Learned mg vs STEALTHYATTACKER t = 6 baseline —®— (z + y) > 1 baseline === Upper bound m* I

Learning curves of training defender policies against static attackers.



Threshold Properties of the Learned Policies

soft
mo(stop|x, y) vs NOISYATTACKER
thresholdsmy(stop|z + y)
1.0
0.8
0.6
0.5 0.4
never 4 0.2
74
stop == 0.0
0.0 e ] 200
0 100 200 300 400 oyl 5 &,‘f
# total alerts x +y 50 100 ’ 100%\6
T vs STEALTHY ATTACKER Warnin 150 0 &%
N
7 vs NOISYATTACKER J g alerts 12 200 ©
o(stop|z, y) vs STEALTHYATTACKER
mo(stopl2)
0.15
0.1
0.05

0.007

0 25 50 75 100
# login attempts z
g vs STEALTHY ATTACKER
7y vs NOISYATTACKER




Open Challenge: Self-Play between Attacker and Defender

o % Flags captured per game P[detected Reward per game
1.0
0.75°
4 0.5
0.25 - 100
0.00- L . . . . v
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
# Policy updates # Policy updates # Policy updates
15 Game length (steps) Plearly ing] 300+ # IDS Alerts per gam
10 20
5 10
X Za o+
0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
# Policy updates # Policy updates # Policy updates

—m— Attacker mga simulation  —e— Attacker mga emulation s Defender mgo simulation = —— Defender mgn emulation'

Learning curves of training the the attacker and the defender
simultaneously in self-play.
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Conclusions & Future Work

» Conclusions:

» We develop a method to find effective strategies for intrusion
prevention

> (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement

learning and (5) domain randomization and generalization.

» We show that self-learning can be successfully applied to
network infrastructures.

»  Self-play reinforcement learning in Markov security game

» Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces,
theoretical understanding of optimal policies

» Qur research plans:
» Extending the theoretical model

> Relaxing simplifying assumptions (e.g. multiple defender actions)

» Evaluation on real world infrastructures
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