
1/34

Self-Learning Systems for Cyber Security
Ledningsregementet Enköping

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering
KTH Royal Institute of Technology

August 18, 2021

2/34

3/34

4/34

Challenges: Evolving and Automated Attacks

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

4/34

Goal: Automation and Learning

I Challenges
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

4/34

Approach: Game Model & Reinforcement Learning

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach:
I Model network attack and defense as

games.
I Use reinforcement learning to learn

policies.
I Incorporate learned policies in

self-learning systems.

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

5/34

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero1, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling2 and intrusion detection etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory3
I Markov decision theory, dynamic programming4
I =⇒ Many security operations involves

strategic decision making

1David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

2Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

3Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

4Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena
Scientific, 2005.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

5/34

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero5, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling6 and intrusion detection etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory7
I Markov decision theory, dynamic programming8
I =⇒ Many security operations involves

strategic decision making

5David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

6Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

7Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

8Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena
Scientific, 2005.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

5/34

State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero9, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling10 and intrusion detection etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory11
I Markov decision theory, dynamic programming12
I =⇒ Many security operations involves

strategic decision making

9David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

10Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

11Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

12Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena
Scientific, 2005.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799

6/34

Our Work

I Use Case: Intrusion Prevention

I Our Method:

I Emulating computer infrastructures
I System identification and model creation
I Reinforcement learning and generalization

I Results:

I Learning to Capture The Flag
I Learning to Prevent Attacks (Optimal Stopping)

I Conclusions and Future Work

7/34

Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

8/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

9/34

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

9/34

Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.

10/34

Emulation: Execution Times of Replicated Operations

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

N
or

m
al

iz
ed

F
re

q
u

en
cy

Action execution times (costs)

|N | = 25

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 50

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 75

0 500 1000 1500 2000

Time Cost (s)

10−5

10−4

10−3

10−2

Action execution times (costs)

|N | = 100

I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system

11/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

12/34

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k

m3,1
...

m3,k

m7,1
...

m7,k

m4,1
...

m4,k

Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

12/34

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k

m3,1
...

m3,k

m7,1
...

m7,k

m4,1
...

m4,k

Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

12/34

From Emulation to Simulation: System Identification

R1

m1m2 m3

m4

m5m6

m7

m1,1 . . . m1,k
[]

m5,1 . . . m5,k
[]

m6,1 . . . m6,k
[]

m2,1
...

m2,k

m3,1
...

m3,k

m7,1
...

m7,k

m4,1
...

m4,k

Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)

13/34

System Identification: Estimated Dynamics Model
1
7
2
.1

8
.4

.2

Connections Failed Logins Accounts Online Users Logins Processes

1
7
2
.1

8
.4

.3
1
7
2
.1

8
.4

.1
0

1
7
2
.1

8
.4

.2
1

1
7
2
.1

8
.4

.7
9

ID
S

Alerts Alert Priorities Severe Alerts Warning Alerts

Estimated Emulation Dynamics

14/34

System Identification: Estimated Dynamics Model

−5 0 5 10 15 20

New TCP/UDP Connections

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New TCP/UDP Connections

0 10 20 30 40 50

New Failed Login Attempts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Failed Login Attempts

−30 −20 −10 0 10 20 30

Created User Accounts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Created User Accounts

−0.04 −0.02 0.00 0.02 0.04

New Logged in Users

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Logged in Users

−0.04 −0.02 0.00 0.02 0.04

Login Events

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

New Login Events

0 20 40 60 80 100 120 140

Created Processes

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Created Processes

Node IP: 172.18.4.2

(b0, a0) (b1, a0) ...

15/34

System Identification: Estimated Dynamics Model

0 20 40 60 80 100 120
IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

IDS Alerts

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Severe IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Severe IDS Alerts

0 20 40 60 80 100
Warning IDS Alerts

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

Warning IDS Alerts

0 50 100 150 200 250
IDS Alert Priorities

0.0

0.2

0.4

0.6

0.8

1.0

P[
·|(
b
i
,
a
i
)]

IDS Alert Priorities

IDS Dynamics

(b0, a0) (b1, a0) ...

16/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

17/34

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ

I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

Agent

Environment

at

st+1

rt+1

17/34

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ

I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

Agent

Environment

at

st+1

rt+1

17/34

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ

I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

Agent

Environment

at

st+1

rt+1

17/34

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ

I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

Agent

Environment

at

st+1

rt+1

17/34

Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E[
∑T

t=1
γt−1rt+1]

I Learning Algorithm:
I Represent π by πθ

I Define objective J(θ) = Eπθ
[
∑T

t=1
γt−1r(st , at)]

I Maximize J(θ) by stochastic gradient ascent
∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Aπθ (s, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

I Finding Effective Security Strategies through Reinforcement
Learning and Self-Playa

I Learning Intrusion Prevention Policies through Optimal
Stoppingb

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

Agent

Environment

at

st+1

rt+1

https://arxiv.org/abs/2106.07160

18/34

Our Method for Finding Effective Security Strategies

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

Emulation System

Real world
Infrastructure

Model Creation &
System Identification

Policy Mapping
π

Selective
Replication

Policy
Implementation π

Simulation System
Reinforcement Learning &

Generalization

Policy evaluation &
Model estimation

Automation &
Self-learning systems

19/34

The Target Infrastructure

I Topology:
I 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

I Services
I 31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2

Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

I RCE Vulnerabilities
I 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1

CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

I 5 Brute-force vulnerabilities

I Operating Systems
I 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1

Kali

I Traffic
I Client 1: HTTP, SSH, SNMP, ICMP
I Client 2: IRC, PostgreSQL, SNMP
I Client 3: FTP, DNS, Telnet

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Target infrastructure.

20/34

The Attacker Model: Capture the Flag (CTF)

I The attacker has T time-steps to collect
flags, with no prior knowledge

I It can connect to a gateway that exposes
public-facing services in the infrastructure.

I It has a pre-defined set (cardinality ∼ 200)
of network/shell commands available,
each command has a cost

I To collect flags, it has to interleave
reconnaissance and exploits.

I Objective: collect all flags with minimum cost

Attacker Clients
. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Target infrastructure.

21/34

The Formal Attacker Model: A Partially Observed MDP
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Attacker observes oA ⊂ s (results of
commands)

I Action space: A = {aA
1 , . . . , aA

k }, aA
i

(commands)
I ∀(s, a) ∈ A× S, there is a probability ~wA,(x)

i ,j
of failure & a probability of detection
ϕ(det(si) · nA,(x)

i ,j)
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

(a) Emulated Infrastructure

(b) Graph Model
N0, ~S0

N1, ~S1
N2, ~S2

N3, ~S3

N4, ~S4

N5, ~S5 N6, ~S6

N7, ~S7

R1R2

21/34

The Formal Attacker Model: A Partially Observed MDP
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Attacker observes oA ⊂ s (results of
commands)

I Action space: A = {aA
1 , . . . , aA

k }, aA
i

(commands)
I ∀(s, a) ∈ A× S, there is a probability ~wA,(x)

i ,j
of failure & a probability of detection
ϕ(det(si) · nA,(x)

i ,j)
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

(a) Emulated Infrastructure

(b) Graph Model
N0, ~S0

N1, ~S1
N2, ~S2

N3, ~S3

N4, ~S4

N5, ~S5 N6, ~S6

N7, ~S7

R1R2

22/34

Learning to Capture the Flags: Training Attacker Policies

0 500 1000 1500 2000 2500
Policy updates

0

25

50

75

100
% Flags captured per episode

0 500 1000 1500 2000 2500
Policy updates

0.00

0.25

0.50

0.75

1.00

P[detected]

0 500 1000 1500 2000 2500
Policy updates

−300

−200

−100

0

100

Reward per episode

0 500 1000 1500 2000 2500
Policy updates

0

25

50

75

100

Episode length (steps)

0 500 1000 1500 2000 2500
Policy updates

2000

4000

6000

8000
Episode length (seconds)

0 500 1000 1500 2000 2500
Policy updates

0

500

1000

1500

IDS Alerts per episode

πθ simulation πθ emulation upper bound

Learning curves (training performance in simulation and evaluation
performance in the emulation) of our proposed method.

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

23/34

Learning Security Policies through Optimal Stopping
Attacker Clients

. . .

Defender

1 IDS1

alerts
Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

24/34

A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅

0 1

∅

continue continue
intrusion
starts

stop stop intrusion
ends

1 20 40 60 80 100
time-step t

−100

0

100

Reward function Rat
st

Stop reward
Continue reward
Intrusion starts

10 20
intrusion start time it

0.00

0.25

0.50

0.75

1.00

C
D
F
I t

(i
t)

It ∼ Ge(p = 0.2)

25/34

Threshold Property of the Optimal Defender Policy (1/4)

Theorem
The optimal policy π∗ is a threshold policy of the form:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise

where α∗ is a unique threshold and
b(1) = P[st = 1|a1, o1, . . . , at−1, ot].

I To see this, consider the optimality condition (Bellman eq):

π∗
(
b(1)

)
= arg max

a∈A

[
r
(
b(1), a

)
+
∑
o∈O

P[o|b(1), a]V ∗
(
ba

o(1)
)]

25/34

Threshold Property of the Optimal Defender Policy (1/4)

Theorem
The optimal policy π∗ is a threshold policy of the form:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise

where α∗ is a unique threshold and
b(1) = P[st = 1|a1, o1, . . . , at−1, ot].

I To see this, consider the optimality condition (Bellman eq):

π∗
(
b(1)

)
= arg max

a∈A

[
r
(
b(1), a

)
+
∑
o∈O

P[o|b(1), a]V ∗
(
ba

o(1)
)]

26/34

Threshold Property of the Optimal Defender Policy (2/4)
I We use A = {S,C} and derive:

π∗(b(1)) = argmax
a∈A

[
r
(
b(1),S

)︸ ︷︷ ︸
ω

, r
(
b(1),C

)
+
∑
o∈O

P[o|b(1),C]V ∗
(
bC

o (1)
)

︸ ︷︷ ︸
ε

]

I ω is the expected reward for stopping and ε is the expected
cumulative reward for continuing

I Expanding the expressions and rearranging terms, we derive
that it is optimal to stop iff:

b(1) ≥

110 +
∑

o∈O
V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)
)

300 +
∑
o∈O

V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)− Z(o, 1, C)
)

︸ ︷︷ ︸
Threshold: αb(1)

26/34

Threshold Property of the Optimal Defender Policy (2/4)
I We use A = {S,C} and derive:

π∗(b(1)) = argmax
a∈A

[
r
(
b(1),S

)︸ ︷︷ ︸
ω

, r
(
b(1),C

)
+
∑
o∈O

P[o|b(1),C]V ∗
(
bC

o (1)
)

︸ ︷︷ ︸
ε

]

I ω is the expected reward for stopping and ε is the expected
cumulative reward for continuing

I Expanding the expressions and rearranging terms, we derive
that it is optimal to stop iff:

b(1) ≥

110 +
∑

o∈O
V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)
)

300 +
∑
o∈O

V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)− Z(o, 1, C)
)

︸ ︷︷ ︸
Threshold: αb(1)

27/34

Threshold Property of the Optimal Defender Policy (3/4)

I Thus π∗ is determined by the scalar thresholds αb(1).
I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex13
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1

13Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635

27/34

Threshold Property of the Optimal Policy (3/4)

I Thus π∗ is determined by the scalar thresholds αb(1).
I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex14
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1

14Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635

27/34

Threshold Property of the Optimal Defender Policy (3/4)

I Thus π∗ is determined by the scalar thresholds αb(1).
I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex15
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1

15Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635

27/34

Threshold Property of the Optimal Defender Policy (3/4)
I Thus π∗ is determined by the scalar thresholds αb(1).

I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex16, S is also

convex17 and has the form [α∗, β∗] where 0 ≤ α∗ ≤ β∗ ≤ 1.
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1
16Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:

Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

17Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104

27/34

Threshold Property of the Optimal Defender Policy (3/4)
I Thus π∗ is determined by the scalar thresholds αb(1).

I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex18, S is also

convex19 and has the form [α∗, β∗] where 0 ≤ α∗ ≤ β∗ ≤ 1.
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1
18Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:

Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

19Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104

28/34

Threshold Property of the Optimal Defender Policy (4/4)

I As the stopping set is S = [α∗, 1] and b(1) ∈ [0, 1]
I We have that it is optimal to stop if b(1) ≥ α∗

I Hence, Theorem 1 follows:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise

28/34

Threshold Property of the Optimal Defender Policy (4/4)

I As the stopping set is S = [α∗, 1] and b(1) ∈ [0, 1]
I We have that it is optimal to stop if b(1) ≥ α∗

I Hence, Theorem 1 follows:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise

29/34

Static Attackers to Emulate Intrusions

Time-steps t Actions

1–It ∼ Ge(0.2) (Intrusion has not started)
It + 1–It + 7 Recon, brute-force attacks (SSH,Telnet,FTP)

on N2,N4,N10, login(N2,N4,N10),
backdoor(N2,N4,N10), Recon

It + 8–It + 11 CVE-2014-6271 on N17, SSH brute-force attack on N12,
login (N17,N12), backdoor(N17,N12)

It + 12–X + 16 CVE-2010-0426 exploit on N12, Recon
SQL-Injection on N18, login(N18), backdoor(N18)

It + 17–It + 22 Recon, CVE-2015-1427 on N25, login(N25)
Recon, CVE-2017-7494 exploit on N27, login(N27)

Table 1: Attacker actions to emulate an intrusion.

30/34

Learning Security Policies through Optimal Stopping

0 1000 2000 3000 4000
policy updates

−100

0

100

200
Reward per episode

0 1000 2000 3000 4000
policy updates

2

4

6

8

Episode length (steps)

0 1000 2000 3000 4000
policy updates

0.2

0.4

0.6

0.8

1.0
P[intrusion interrupted]

0 1000 2000 3000 4000
policy updates

0.0

0.2

0.4

0.6

0.8

1.0
P[early stopping]

0 1000 2000 3000 4000
policy updates

1

2

3

4
Uninterrupted intrusion t

Learned πθ vs NoisyAttacker Learned πθ vs StealthyAttacker t = 6 baseline (x + y) ≥ 1 baseline Upper bound π∗

Learning curves of training defender policies against static attackers.

31/34

Threshold Properties of the Learned Policies

0 100 200 300 400
total alerts x+ y

0.0

0.5

1.0

πθ(stop|x+ y)

πθ vs StealthyAttacker

πθ vs NoisyAttacker

0 25 50 75 100
login attempts z

0.00

0.05

0.10

0.15
πθ(stop|z)

πθ vs StealthyAttacker

πθ vs NoisyAttacker

0
50

100
150

200 0
50

100
150

200
0.0

0.2

0.4

0.6

0.8

1.0

πθ(stop|x, y) vs StealthyAttacker

0
50

100
150

200 0
50

100
150

200
0.0

0.2

0.4

0.6

0.8

πθ(stop|x, y) vs NoisyAttacker
soft

thresholds

never
stop

sev
ere

aler
ts x

warning alerts y

warning alerts y sev
ere

aler
ts x

32/34

Open Challenge: Self-Play between Attacker and Defender

0 500 1000 1500 2000 2500
Policy updates

0

20

40

60

80
% Flags captured per game

0 500 1000 1500 2000 2500
Policy updates

0.00

0.25

0.50

0.75

1.00

P[detected]

0 500 1000 1500 2000 2500
Policy updates

−100

0

100
Reward per game

0 500 1000 1500 2000 2500
Policy updates

0

50

100

150
Game length (steps)

0 500 1000 1500 2000 2500
Policy updates

0.00

0.25

0.50

0.75

1.00

P[early stopping]

0 500 1000 1500 2000 2500
Policy updates

0

100

200

300
IDS Alerts per game

Attacker πθA simulation Attacker πθA emulation Defender πθD simulation Defender πθD emulation

Learning curves of training the the attacker and the defender
simultaneously in self-play.

33/34

Conclusions & Future Work

I Conclusions:

I We develop a method to find effective strategies for intrusion
prevention

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We show that self-learning can be successfully applied to
network infrastructures.

I Self-play reinforcement learning in Markov security game

I Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces,
theoretical understanding of optimal policies

I Our research plans:
I Extending the theoretical model

I Relaxing simplifying assumptions (e.g. multiple defender actions)

I Evaluation on real world infrastructures

34/34

References

I Finding Effective Security Strategies through Reinforcement
Learning and Self-Play20
I Preprint open access:

https://arxiv.org/abs/2009.08120
I Learning Intrusion Prevention Policies through Optimal

Stopping21
I Preprint open access:

https://arxiv.org/pdf/2106.07160.pdf

20Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

21Kim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

https://arxiv.org/abs/2009.08120
https://arxiv.org/pdf/2106.07160.pdf
https://arxiv.org/abs/2106.07160

