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Challenges: Evolving and Automated Attacks

I Challenges:
I Evolving & automated attacks
I Complex infrastructures
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Goal: Automation and Learning

I Challenges
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods
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Approach: Game Model & Reinforcement Learning

I Challenges:
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach:
I Model network attack and defense as

games.
I Use reinforcement learning to learn

policies.
I Incorporate learned policies in

self-learning systems.
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State of the Art
I Game-Learning Programs:

I TD-Gammon, AlphaGo Zero1, OpenAI Five etc.
I =⇒ Impressive empirical results of RL and self-play

I Attack Simulations:
I Automated threat modeling2 and intrusion detection etc.
I =⇒ Need for automation and better security tooling

I Mathematical Modeling:
I Game theory3
I Markov decision theory, dynamic programming4
I =⇒ Many security operations involves

strategic decision making

1David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550 (Oct. 2017),
pp. 354–. url: http://dx.doi.org/10.1038/nature24270.

2Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. “A Meta Language for Threat Modeling and
Attack Simulations”. In: Proceedings of the 13th International Conference on Availability, Reliability and Security.
ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. isbn: 9781450364485. doi:
10.1145/3230833.3232799. url: https://doi.org/10.1145/3230833.3232799.

3Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA:
Cambridge University Press, 2010. isbn: 0521119324.

4Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena
Scientific, 2005.

http://dx.doi.org/10.1038/nature24270
https://doi.org/10.1145/3230833.3232799
https://doi.org/10.1145/3230833.3232799
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Our Work

I Use Case: Intrusion Prevention

I Our Method:

I Emulating computer infrastructures
I System identification and model creation
I Reinforcement learning and generalization

I Results:

I Learning to Capture The Flag
I Learning to Prevent Attacks (Optimal Stopping)

I Conclusions and Future Work
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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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Our Method for Finding Effective Security Strategies
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Emulation System Σ Configuration Space
σi

** *

172.18.4.0/24172.18.19.0/24172.18.61.0/24

Emulated Infrastructures

R1 R1 R1

Emulation
A cluster of machines that runs a virtualized infrastructure
which replicates important functionality of target systems.

I The set of virtualized configurations define a
configuration space Σ = 〈A,O,S,U , T ,V〉.

I A specific emulation is based on a configuration σi ∈ Σ.
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Emulation: Execution Times of Replicated Operations
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I Fundamental issue: Computational methods for policy
learning typically require samples on the order of 100k − 10M.

I =⇒ Infeasible to optimize in the emulation system
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Our Method for Finding Effective Security Strategies
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From Emulation to Simulation: System Identification
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Emulated Network Abstract Model POMDP Model
〈S,A,P,R, γ,O,Z〉

a1 a2 a3 . . .

s1 s2 s3 . . .

o1 o2 o3 . . .

I Abstract Model Based on Domain Knowledge: Models
the set of controls, the objective function, and the features of
the emulated network.
I Defines the static parts a POMDP model.

I Dynamics Model (P, Z) Identified using System
Identification: Algorithm based on random walks and
maximum-likelihood estimation.

M(b′|b, a) , n(b, a, b′)∑
j′ n(s, a, j ′)
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System Identification: Estimated Dynamics Model
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System Identification: Estimated Dynamics Model
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System Identification: Estimated Dynamics Model
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Our Method for Finding Effective Security Strategies
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Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E
[∑T

t=1 γ
t−1rt+1

]
I Learning Algorithm:

I Represent π by πθ

I Define objective J(θ) = Eπθ

[∑T
t=1 γ

t−1r(st , at)
]

I Maximize J(θ) by stochastic gradient ascent

∇θJ(θ) = Eπθ

[
∇θ log πθ(a|s)︸ ︷︷ ︸

actor

Aπθ (s, a)︸ ︷︷ ︸
critic

]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

Agent

Environment

at

st+1

rt+1
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Policy Optimization in the Simulation System
using Reinforcement Learning
I Goal:

I Approximate π∗ = arg maxπ E[
∑T

t=1
γt−1rt+1]

I Learning Algorithm:
I Represent π by πθ

I Define objective J(θ) = Eπθ
[
∑T

t=1
γt−1r(st , at )]

I Maximize J(θ) by stochastic gradient ascent
∇θJ(θ) = Eπθ [∇θ log πθ(a|s)Aπθ (s, a)]

I Domain-Specific Challenges:
I Partial observability
I Large state space
I Large action space
I Non-stationary Environment due to attacker
I Generalization

I Finding Effective Security Strategies through Reinforcement
Learning and Self-Playa

I Learning Intrusion Prevention Policies through Optimal
Stoppingb

aKim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv:
2106.07160 [cs.AI].

Agent

Environment

at

st+1

rt+1

https://arxiv.org/abs/2106.07160
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Our Method for Finding Effective Security Strategies
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The Target Infrastructure

I Topology:
I 30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker,

1 Defender

I Services
I 31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2

Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba,
19 PostgreSQL

I RCE Vulnerabilities
I 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1

CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1
CVE-2015-1427, 1 CVE-2017-7494

I 5 Brute-force vulnerabilities

I Operating Systems
I 23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1

Kali

I Traffic
I Client 1: HTTP, SSH, SNMP, ICMP
I Client 2: IRC, PostgreSQL, SNMP
I Client 3: FTP, DNS, Telnet

Attacker Clients
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Target infrastructure.
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The Attacker Model: Capture the Flag (CTF)

I The attacker has T time-steps to collect
flags, with no prior knowledge

I It can connect to a gateway that exposes
public-facing services in the infrastructure.

I It has a pre-defined set (cardinality ∼ 200)
of network/shell commands available,
each command has a cost

I To collect flags, it has to interleave
reconnaissance and exploits.
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The Formal Attacker Model: A Partially Observed MDP
I Model infrastructure as a graph G = 〈N , E〉
I There are k flags at nodes C ⊆ N
I Ni ∈ N has a node state si of m attributes
I Network state

s = {sA, si | i ∈ N} ∈ R|N |×m+|N |

I Attacker observes oA ⊂ s (results of
commands)

I Action space: A = {aA
1 , . . . , aA

k }, aA
i

(commands)
I ∀(s, a) ∈ A× S, there is a probability ~wA,(x)

i ,j
of failure & a probability of detection
ϕ(det(si ) · nA,(x)

i ,j )
I State transitions s → s ′ are decided by a

discrete dynamical system s ′ = F (s, a)

(a) Emulated Infrastructure

(b) Graph Model
N0, ~S0

N1, ~S1
N2, ~S2

N3, ~S3

N4, ~S4

N5, ~S5 N6, ~S6

N7, ~S7
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Learning to Capture the Flags: Training Attacker Policies
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Learning Security Policies through Optimal Stopping
Attacker Clients
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I Intrusion Prevention as Optimal Stopping Problem:
I Defender observes the infrastructure (IDS, log files, etc.).
I An intrusion occurs at an unknown time.
I The defender can “stop” the intrusion.
I Stopping shuts down the service provided by the infrastructure.
I =⇒ trade-off two objectives: service and security
I Based on the observations, when is it optimal to stop?
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A Partially Observed MDP Model for the Defender
I States:

I Intrusion state it ∈ {0, 1}, terminal
state ∅.

I Observations:
I Severe/Warning IDS Alerts

(∆x ,∆y), Login attempts ∆z .
fXYZ (∆x ,∆y ,∆z |it , It , t)

I Actions:
I “Stop” (S) and “Continue” (C)

I Rewards:
I Reward: security and service.

Penalty: false alarms and intrusions
I Transition probabilities:

I Bernoulli process (Qt)T
t=1 ∼ Ber(p)

defines intrusion start It ∼ Ge(p)
I Objective and Horizon:

I max Eπθ

[∑T∅
t=1 r(st , at)

]
, T∅
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Threshold Property of the Optimal Defender Policy (1/4)

Theorem
The optimal policy π∗ is a threshold policy of the form:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise

where α∗ is a unique threshold and
b(1) = P[st = 1|a1, o1, . . . , at−1, ot ].

I To see this, consider the optimality condition (Bellman eq):

π∗
(
b(1)

)
= arg max

a∈A

[
r
(
b(1), a

)
+
∑
o∈O

P[o|b(1), a]V ∗
(
ba

o(1)
)]
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Threshold Property of the Optimal Defender Policy (2/4)
I We use A = {S,C} and derive:

π∗(b(1)) = argmax
a∈A

[
r
(
b(1),S

)︸ ︷︷ ︸
ω

, r
(
b(1),C

)
+
∑
o∈O

P[o|b(1),C ]V ∗
(
bC

o (1)
)

︸ ︷︷ ︸
ε

]

I ω is the expected reward for stopping and ε is the expected
cumulative reward for continuing

I Expanding the expressions and rearranging terms, we derive
that it is optimal to stop iff:

b(1) ≥

110 +
∑

o∈O
V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)
)

300 +
∑
o∈O

V∗
(

bC
o (1)
)(

pZ(o, 1, C) + (1− p)Z(o, 0, C)− Z(o, 1, C)
)

︸ ︷︷ ︸
Threshold: αb(1)
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Threshold Property of the Optimal Defender Policy (3/4)

I Thus π∗ is determined by the scalar thresholds αb(1).
I it is optimal to stop if b(1) ≥ αb(1)

I The stopping set is:

S =
{
b(1) ∈ [0, 1] : b(1) ≥ αb(1)

}
I Since V ∗(b) is piecewise linear and convex13
I When b(1) = 1 it is optimal to take the stop action S:

π∗(1) = arg max
[
100,−90 +

∑
o∈O
Z(o, 1,C)V ∗

(
bC

o (1)
)]

= S

I This means that β∗ = 1

13Edward J. Sondik. “The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon:
Discounted Costs”. In: Operations Research 26.2 (1978), pp. 282–304. issn: 0030364X, 15265463. url:
http://www.jstor.org/stable/169635.

http://www.jstor.org/stable/169635
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17Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104
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http://www.jstor.org/stable/169635.

19Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing.
Cambridge University Press, 2016. doi: 10.1017/CBO9781316471104.

http://www.jstor.org/stable/169635
https://doi.org/10.1017/CBO9781316471104
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Threshold Property of the Optimal Defender Policy (4/4)

I As the stopping set is S = [α∗, 1] and b(1) ∈ [0, 1]
I We have that it is optimal to stop if b(1) ≥ α∗

I Hence, Theorem 1 follows:

π∗
(
b(1)

)
=
{
S (stop) if b(1) ≥ α∗

C (continue) otherwise
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Static Attackers to Emulate Intrusions

Time-steps t Actions

1–It ∼ Ge(0.2) (Intrusion has not started)
It + 1–It + 7 Recon, brute-force attacks (SSH,Telnet,FTP)

on N2,N4,N10, login(N2,N4,N10),
backdoor(N2,N4,N10), Recon

It + 8–It + 11 CVE-2014-6271 on N17, SSH brute-force attack on N12,
login (N17,N12), backdoor(N17,N12)

It + 12–X + 16 CVE-2010-0426 exploit on N12, Recon
SQL-Injection on N18, login(N18), backdoor(N18)

It + 17–It + 22 Recon, CVE-2015-1427 on N25, login(N25)
Recon, CVE-2017-7494 exploit on N27, login(N27)

Table 1: Attacker actions to emulate an intrusion.
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Learning Security Policies through Optimal Stopping
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Learning curves of training defender policies against static attackers.
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Threshold Properties of the Learned Policies
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Open Challenge: Self-Play between Attacker and Defender
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Conclusions & Future Work

I Conclusions:

I We develop a method to find effective strategies for intrusion
prevention

I (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement
learning and (5) domain randomization and generalization.

I We show that self-learning can be successfully applied to
network infrastructures.

I Self-play reinforcement learning in Markov security game

I Key challenges: stable convergence, sample efficiency,
complexity of emulations, large state and action spaces,
theoretical understanding of optimal policies

I Our research plans:
I Extending the theoretical model

I Relaxing simplifying assumptions (e.g. multiple defender actions)

I Evaluation on real world infrastructures
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