Self-Learning Systems for Cyber Security Ledningsregementet Enköping

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering KTH Royal Institute of Technology

August 18, 2021

Challenges: Evolving and Automated Attacks

Challenges:

- Evolving & automated attacks
- Complex infrastructures

Goal: Automation and Learning

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Approach: Game Model & Reinforcement Learning

Challenges:

- Evolving & automated attacks
- Complex infrastructures

• Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Our Approach:

- Model network attack and defense as games.
- Use reinforcement learning to learn policies.
- Incorporate learned policies in self-learning systems.

State of the Art

► Game-Learning Programs:

- TD-Gammon, AlphaGo Zero¹, OpenAl Five etc.
- ► ⇒ Impressive empirical results of *RL and self-play*

Attack Simulations:

- Automated threat modeling² and intrusion detection etc.
- $\blacktriangleright \implies$ Need for *automation* and better security tooling
- Mathematical Modeling:
 - ► Game theory³
 - Markov decision theory, dynamic programming⁴
 - Any security operations involves strategic decision making

¹David Silver et al. "Mastering the game of Go without human knowledge". In: *Nature* 550 (Oct. 2017), pp. 354-. URL: http://dx.doi.org/10.1038/nature24270.

²Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: *Proceedings of the 13th International Conference on Availability, Reliability and Security.* ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

³Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

⁴Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

State of the Art

Game-Learning Programs:

▶ TD-Gammon, AlphaGo Zero⁵, OpenAl Five etc.

 \implies Impressive empirical results of *RL and self-play*

Attack Simulations:

• Automated threat modeling⁶ and intrusion detection etc.

 $\blacktriangleright \implies$ Need for *automation* and better security tooling

Mathematical Modeling:

► Game theory⁷

Markov decision theory, dynamic programming⁸

 Any security operations involves strategic decision making

⁵David Silver et al. "Mastering the game of Go without human knowledge". In: Nature 550 (Oct. 2017), pp. 354–. URL: http://dx.doi.org/10.1038/nature24270.

⁶Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: Proceedings of the 13th International Conference on Availability, Reliability and Security. ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

¹Tansu Alpcan and Tamer Basar. Network Security: A Decision and Game-Theoretic Approach. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

⁸Dimitri P. Bertsekas. *Dynamic Programming and Optimal Control*. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

State of the Art

Game-Learning Programs:

- TD-Gammon, AlphaGo Zero⁹, OpenAl Five etc.
- Impressive empirical results of *RL and self-play*
- Attack Simulations:
 - Automated threat modeling¹⁰ and intrusion detection etc.
 - Need for automation and better security tooling
- Mathematical Modeling:
 - Game theory¹¹
 - Markov decision theory, dynamic programming¹²
 - Any security operations involves strategic decision making

¹⁰Pontus Johnson, Robert Lagerström, and Mathias Ekstedt. "A Meta Language for Threat Modeling and Attack Simulations". In: *Proceedings of the 13th International Conference on Availability, Reliability and Security.* ARES 2018. Hamburg, Germany: Association for Computing Machinery, 2018. ISBN: 9781450364485. DOI: 10.1145/3230833.3232799. URL: https://doi.org/10.1145/3230833.3232799.

¹¹Tansu Alpcan and Tamer Basar. *Network Security: A Decision and Game-Theoretic Approach*. 1st. USA: Cambridge University Press, 2010. ISBN: 0521119324.

¹²Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

⁹David Silver et al. "Mastering the game of Go without human knowledge". In: Nature 550 (Oct. 2017), pp. 354-. URL: http://dx.doi.org/10.1038/nature24270.

Our Work

Use Case: Intrusion Prevention

Our Method:

- Emulating computer infrastructures
- System identification and model creation
- Reinforcement learning and generalization

Results:

- Learning to Capture The Flag
- Learning to Prevent Attacks (Optimal Stopping)

Conclusions and Future Work

Use Case: Intrusion Prevention

A Defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure by monitoring and active defense

An Attacker seeks to intrude on the infrastructure

- Has a partial view of the infrastructure
- Wants to compromise specific components
- Attacks by reconnaissance, exploitation and pivoting

Emulation System

Σ Configuration Space

Emulation

A cluster of machines that runs a virtualized infrastructure which replicates important functionality of target systems.

- The set of virtualized configurations define a configuration space Σ = ⟨A, O, S, U, T, V⟩.
- A specific emulation is based on a configuration $\sigma_i \in \Sigma$.

Emulation System

 Σ Configuration Space

Emulation

A cluster of machines that runs a virtualized infrastructure which replicates important functionality of target systems.

- The set of virtualized configurations define a configuration space Σ = (A, O, S, U, T, V).
- A specific emulation is based on a configuration $\sigma_i \in \Sigma$.

Emulation: Execution Times of Replicated Operations

- Fundamental issue: Computational methods for policy learning typically require samples on the order of 100k – 10M.
- $\blacktriangleright \implies$ Infeasible to optimize in the emulation system

From Emulation to Simulation: System Identification

- Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.
 - Defines the static parts a POMDP model.
- Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) \triangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

From Emulation to Simulation: System Identification

- Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.
 - Defines the static parts a POMDP model.
- Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) \triangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

From Emulation to Simulation: System Identification

Abstract Model Based on Domain Knowledge: Models the set of controls, the objective function, and the features of the emulated network.

Defines the static parts a POMDP model.

Dynamics Model (P, Z) Identified using System Identification: Algorithm based on random walks and maximum-likelihood estimation.

$$\mathcal{M}(b'|b,a) \triangleq rac{n(b,a,b')}{\sum_{j'} n(s,a,j')}$$

System Identification: Estimated Dynamics Model

System Identification: Estimated Dynamics Model

Node IP: 172.18.4.2

System Identification: Estimated Dynamics Model

IDS Dynamics

► Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r_{t+1} \right]$

- **Learning Algorithm**:
 - **Represent** π by π_{θ}
 - Define objective $J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) \right]$

• Maximize $J(\theta)$ by stochastic gradient ascent

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\underbrace{\nabla_{\theta} \log \pi_{\theta}(a|s)}_{\text{actor}} \underbrace{\mathcal{A}^{\pi_{\theta}}(s,a)}_{\text{critic}} \right]$$

Domain-Specific Challenges:

- Partial observability
- Large state space
- Large action space
- Non-stationary Environment due to attacker
- Generalization

Goal:

- Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r_{t+1} \right]$
- Learning Algorithm:
 - **Represent** π by π_{θ}
 - Define objective $J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) \right]$

• Maximize $J(\theta)$ by stochastic gradient ascent

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\underbrace{\nabla_{\theta} \log \pi_{\theta}(a|s)}_{\text{actor}} \underbrace{\mathcal{A}^{\pi_{\theta}}(s,a)}_{\text{critic}} \right]$$

Domain-Specific Challenges:

- Partial observability
- Large state space
- Large action space
- Non-stationary Environment due to attacker
- Generalization

► Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r_{t+1} \right]$

Learning Algorithm:

- Represent π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) \right]$

• Maximize $J(\theta)$ by stochastic gradient ascent

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\underbrace{\nabla_{\theta} \log \pi_{\theta}(a|s)}_{\text{actor}} \underbrace{\mathcal{A}^{\pi_{\theta}}(s, a)}_{\text{critic}} \right]$$

- Partial observability
- Large state space
- Large action space
- Non-stationary Environment due to attacker
- Generalization

► Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E} \left[\sum_{t=1}^{T} \gamma^{t-1} r_{t+1} \right]$

Learning Algorithm:

- **Represent** π by π_{θ}
- Define objective $J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) \right]$

• Maximize $J(\theta)$ by stochastic gradient ascent

$$\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\underbrace{\nabla_{\theta} \log \pi_{\theta}(a|s)}_{\text{actor}} \underbrace{\mathcal{A}^{\pi_{\theta}}(s,a)}_{\text{critic}} \right]$$

- Partial observability
- Large state space
- Large action space
- Non-stationary Environment due to attacker
- Generalization

Goal:

• Approximate $\pi^* = \arg \max_{\pi} \mathbb{E}[\sum_{t=1}^{T} \gamma^{t-1} r_{t+1}]$

- Learning Algorithm:
 - Represent π by π_{θ}
 - Define objective $J(\theta) = \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T} \gamma^{t-1} r(s_t, a_t) \right]$
 - Maximize $J(\theta)$ by stochastic gradient ascent $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(a|s) A^{\pi_{\theta}}(s, a)]$

- Partial observability
- Large state space
- Large action space
- Non-stationary Environment due to attacker
- Generalization

Finding Effective Security Strategies through Reinforcement Learning and Self-Play^a

 Learning Intrusion Prevention Policies through Optimal Stopping^b

^aKim Hammar and Rolf Stadler. "Finding Effective Security Strategies through Reinforcement Learning and Self-Play". In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

^bKim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv: 2106.07160 [cs.AI].
Our Method for Finding Effective Security Strategies

The Target Infrastructure

Topology:

30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker, 1 Defender

Services

31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2 Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba, 19 PostgreSQL

RCE Vulnerabilities

- 1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1 CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1 CVE-2015-1427, 1 CVE-2017-7494
 - 5 Brute-force vulnerabilities

Operating Systems

23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1 Kali

Traffic

- Client 1: HTTP, SSH, SNMP, ICMP
- Client 2: IRC, PostgreSQL, SNMP
- Client 3: FTP, DNS, Telnet

Target infrastructure.

The Attacker Model: Capture the Flag (CTF)

- The attacker has T time-steps to collect flags, with no prior knowledge
- It can connect to a gateway that exposes public-facing services in the infrastructure.
- It has a pre-defined set (cardinality ~ 200) of network/shell commands available, each command has a cost
- To collect flags, it has to interleave reconnaissance and exploits.
- Objective: collect all flags with minimum cost

Target infrastructure.

The Formal Attacker Model: A Partially Observed MDP

- Model infrastructure as a graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$
- There are k flags at nodes $C \subseteq \mathcal{N}$
- $N_i \in \mathcal{N}$ has a *node state* s_i of *m* attributes
- $\blacktriangleright \text{ Network state} \\ s = \{s_A, s_i \mid i \in \mathcal{N}\} \in \mathbb{R}^{|\mathcal{N}| \times m + |\mathcal{N}|}$
- Attacker observes o^A ⊂ s (results of commands)
- Action space: A = {a₁^A,..., a_k^A}, a_i^A (commands)
- ∀(s, a) ∈ A × S, there is a probability w^{A,(×)} of failure & a probability of detection φ(det(s_i) · n^{A,(×)}_{i,j})
- State transitions s → s' are decided by a discrete dynamical system s' = F(s, a)

The Formal Attacker Model: A Partially Observed MDP

- Model infrastructure as a graph $\mathcal{G} = \langle \mathcal{N}, \mathcal{E} \rangle$
- There are k flags at nodes $C \subseteq N$
- ▶ $N_i \in \mathcal{N}$ has a *node state* s_i of *m* attributes
- ► Network state $s = \{s_A, s_i \mid i \in \mathcal{N}\} \in \mathbb{R}^{|\mathcal{N}| \times m + |\mathcal{N}|}$
- Attacker observes o^A ⊂ s (results of commands)
- Action space: A = {a₁^A,..., a_k^A}, a_i^A (commands)
- ∀(s, a) ∈ A × S, there is a probability w^{A,(×)}_{i,j}
 of failure & a probability of detection
 φ(det(s_i) ⋅ n^{A,(×)}_{i,j})
- State transitions s → s' are decided by a discrete dynamical system s' = F(s, a)

Learning to Capture the Flags: Training Attacker Policies

Learning curves (training performance in simulation and evaluation performance in the emulation) of our proposed method.

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
- $\blacktriangleright \implies$ trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
- $\blacktriangleright \implies$ trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
- trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
 - An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
- Based on the observations, when is it optimal to stop?

Intrusion Prevention as Optimal Stopping Problem:

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.

Stopping shuts down the service provided by the infrastructure.

- \implies trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
 - \blacktriangleright \implies trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
 - \implies trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can "stop" the intrusion.
- Stopping shuts down the service provided by the infrastructure.
- $\blacktriangleright \implies$ trade-off two objectives: service and security
- Based on the observations, when is it optimal to stop?

States:

- Intrusion state i_t ∈ {0, 1}, terminal state Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, l_t, t)$
- Actions:
 - ▶ "Stop" (S) and "Continue" (C)
- Rewards:
 - Reward: security and service. Penalty: false alarms and intrusion
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)⁻¹
- Objective and Horizon:

States:

Intrusion state i_t ∈ {0,1}, terminal state Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, I_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusion
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)⁻¹
- Objective and Horizon:

States:

- Intrusion state i_t ∈ {0,1}, terminal state Ø.
- Observations:
 - Severe/Warning IDS Alerts ($\Delta x, \Delta y$), Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusion
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)⁻¹
- Objective and Horizon:

States:

- Intrusion state i_t ∈ {0,1}, terminal state Ø.
- Observations:
 - Severe/Warning IDS Alerts ($\Delta x, \Delta y$), Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, l_t, t)$
- Actions:
 - ▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service.
 Penalty: false alarms and intrusions₀₀
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p) - u
- Objective and Horizon:

States:

- Intrusion state i_t ∈ {0,1}, terminal state Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, l_t, t)$
- Actions:
 - ▶ "Stop" (S) and "Continue" (C)

Rewards:

Reward: security and service. Penalty: false alarms and intrusion

Transition probabilities:

Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)

 $\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$

Objective and Horizon:

States:

- Intrusion state i_t ∈ {0,1}, terminal state Ø.
- Observations:
 - Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, l_t, t)$
- Actions:
 - ▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service.
 Penalty: false alarms and intrusion
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)⁻¹
- Objective and Horizon:

States:

Intrusion state i_t ∈ {0,1}, terminal state Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz . $f_{XYZ}(\Delta x, \Delta y, \Delta z | i_t, I_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service.
 Penalty: false alarms and intrusions₀₀
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p) ⁻¹⁰
- Objective and Horizon:

$$\bullet \max \mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], \ T_{\emptyset}$$

Theorem

The optimal policy π^* is a threshold policy of the form:

$$\pi^*(b(1)) = egin{cases} {\sf S} \ (stop) & ext{if } b(1) \geq c \ {\sf C} \ (continue) & ext{otherwise} \end{cases}$$

where α^* is a unique threshold and $b(1) = \mathbb{P}[s_t = 1 | a_1, o_1, \dots, a_{t-1}, o_t].$

► To see this, consider the **optimality condition** (Bellman eq):

$$\pi^*ig(b(1)ig) = rg\max_{a\in\mathcal{A}}\left[rig(b(1),aig) + \sum_{o\in\mathcal{O}}\mathbb{P}[o|b(1),a]V^*ig(b_o^a(1)ig)
ight]$$

Theorem

The optimal policy π^* is a threshold policy of the form:

$$\pi^*(b(1)) = egin{cases} {\sf S} \ ({\it stop}) & {\it if} \ b(1) \geq lpha \ {\sf C} \ ({\it continue}) & {\it otherwise} \end{cases}$$

where α^* is a unique threshold and $b(1) = \mathbb{P}[s_t = 1 | a_1, o_1, \dots, a_{t-1}, o_t].$

To see this, consider the optimality condition (Bellman eq):

$$\pi^*\big(b(1)\big) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \left[r\big(b(1),a\big) + \sum_{o \in \mathcal{O}} \mathbb{P}[o|b(1),a] V^*\big(b_o^a(1)\big) \right]$$

• We use
$$\mathcal{A} = \{S, C\}$$
 and derive:

$$\pi^*(b(1)) = \operatorname*{argmax}_{a \in \mathcal{A}} \left[\underbrace{r(b(1), S)}_{\omega}, \underbrace{r(b(1), C) + \sum_{o \in \mathcal{O}} \mathbb{P}[o|b(1), C] V^*(b_o^C(1))}_{\epsilon} \right]_{\epsilon}$$

- ω is the expected reward for stopping and ε is the expected cumulative reward for continuing
- Expanding the expressions and rearranging terms, we derive that it is optimal to stop iff:

$$\begin{split} b(1) \geq \\ \underbrace{\frac{110 + \sum_{o \in \mathcal{O}} V^* \left(b_o^C(1) \right) \left(p\mathcal{Z}(o, 1, C) + (1 - p)\mathcal{Z}(o, 0, C) \right)}{300 + \sum_{o \in \mathcal{O}} V^* \left(b_o^C(1) \right) \left(p\mathcal{Z}(o, 1, C) + (1 - p)\mathcal{Z}(o, 0, C) - \mathcal{Z}(o, 1, C) \right)}_{\text{Threshold: } \alpha_b(1)} \end{split}}$$

• We use
$$\mathcal{A} = \{S, C\}$$
 and derive:

$$\pi^*(b(1)) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left[\underbrace{r(b(1), S)}_{\omega}, r(b(1), C) + \sum_{o \in \mathcal{O}} \mathbb{P}[o|b(1), C] V^*(b_o^C(1)) \right]_{\epsilon}$$

- ω is the expected reward for stopping and ε is the expected cumulative reward for continuing
- Expanding the expressions and rearranging terms, we derive that it is optimal to stop iff:

$$b(1) \geq \frac{110 + \sum_{o \in \mathcal{O}} V^* \left(b_o^C(1) \right) \left(p \mathcal{Z}(o, 1, C) + (1 - p) \mathcal{Z}(o, 0, C) \right)}{300 + \sum_{o \in \mathcal{O}} V^* \left(b_o^C(1) \right) \left(p \mathcal{Z}(o, 1, C) + (1 - p) \mathcal{Z}(o, 0, C) - \mathcal{Z}(o, 1, C) \right)}$$

Threshold: $\alpha_{b(1)}$

Thus π* is determined by the scalar thresholds α_{b(1)}.
 it is optimal to stop if b(1) ≥ α_{b(1)}
 The stopping set is:

$$\mathscr{S} = \left\{ b(1) \in [0,1] : b(1) \ge \alpha_{b(1)} \right\}$$

Since V*(b) is piecewise linear and convex¹³
 When b(1) = 1 it is optimal to take the stop action S:

$$\pi^*(1) = \arg \max \left[100, -90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^*(b_o^C(1)) \right] = S$$

¹³Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: Operations Research 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

Thus π* is determined by the scalar thresholds α_{b(1)}.
 it is optimal to stop if b(1) ≥ α_{b(1)}

The stopping set is:

$$\mathscr{S} = \left\{ b(1) \in [0,1] : b(1) \ge \alpha_{b(1)} \right\}$$

Since V*(b) is piecewise linear and convex¹⁴
 When b(1) = 1 it is optimal to take the stop action S:

$$\pi^*(1) = \arg \max \left[100, -90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^*(b_o^C(1)) \right] = S$$

¹⁴Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: *Operations Research* 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

Thus π* is determined by the scalar thresholds α_{b(1)}.
 it is optimal to stop if b(1) ≥ α_{b(1)}

► The *stopping set* is:

$$\mathscr{S} = \left\{ b(1) \in [0,1] : b(1) \geq lpha_{b(1)}
ight\}$$

Since V*(b) is piecewise linear and convex¹⁵
 When b(1) = 1 it is optimal to take the stop action S:

$$\pi^*(1) = \arg \max \left[100, -90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^*(b_o^C(1)) \right] = S$$

¹⁵Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: Operations Research 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

Thus π* is determined by the scalar thresholds α_{b(1)}.
 it is optimal to stop if b(1) ≥ α_{b(1)}

► The *stopping set* is:

$$\mathscr{S} = \left\{ b(1) \in [0,1] : b(1) \geq lpha_{b(1)}
ight\}$$

Since V*(b) is piecewise linear and convex¹⁶, S is also convex¹⁷ and has the form [α*, β*] where 0 ≤ α* ≤ β* ≤ 1.
 When b(1) = 1 it is optimal to take the stop action S:

$$\pi^*(1) = \arg \max \left[100, -90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^*(b_o^{\mathsf{C}}(1)) \right] = S$$

• This means that $\beta^* = 1$

¹⁶Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: *Operations Research* 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

¹⁷Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

Thus π* is determined by the scalar thresholds α_{b(1)}.
 it is optimal to stop if b(1) ≥ α_{b(1)}

▶ The *stopping set* is:

$$\mathscr{S} = \left\{ b(1) \in [0,1] : b(1) \ge lpha_{b(1)} \right\}$$

Since V*(b) is piecewise linear and convex¹⁸, S is also convex¹⁹ and has the form [α^{*}, β^{*}] where 0 ≤ α^{*} ≤ β^{*} ≤ 1.

• When b(1) = 1 it is optimal to take the stop action S:

$$\pi^*(1) = \arg \max \left[100, -90 + \sum_{o \in \mathcal{O}} \mathcal{Z}(o, 1, C) V^*(b_o^{\mathcal{C}}(1)) \right] = S$$

¹⁸Edward J. Sondik. "The Optimal Control of Partially Observable Markov Processes Over the Infinite Horizon: Discounted Costs". In: *Operations Research* 26.2 (1978), pp. 282–304. ISSN: 0030364X, 15265463. URL: http://www.jstor.org/stable/169635.

¹⁹Vikram Krishnamurthy. Partially Observed Markov Decision Processes: From Filtering to Controlled Sensing. Cambridge University Press, 2016. DOI: 10.1017/CB09781316471104.

- ▶ As the stopping set is $\mathscr{S} = [\alpha^*, 1]$ and $b(1) \in [0, 1]$
- We have that it is optimal to stop if $b(1) \ge \alpha^*$

Hence, **Theorem 1** follows:

$$\pi^*(b(1)) = egin{cases} S \ (ext{stop}) & ext{if} \ b(1) \geq lpha^* \ C \ (ext{continue}) & ext{otherwise} \end{cases}$$

As the stopping set is S = [α*, 1] and b(1) ∈ [0, 1]
 We have that it is optimal to stop if b(1) ≥ α*

Hence, Theorem 1 follows:

$$\pi^*(b(1)) = egin{cases} S \ (ext{stop}) & ext{if} \ b(1) \geq lpha^* \ C \ (ext{continue}) & ext{otherwise} \end{cases}$$

Static Attackers to Emulate Intrusions

Time-steps t	Actions
$1-I_t \sim Ge(0.2)$	(Intrusion has not started)
$I_t + 1 - I_t + 7$	Recon , brute-force attacks (SSH,Telnet,FTP)
	on N ₂ , N ₄ , N ₁₀ , login(N ₂ , N ₄ , N ₁₀),
	$backdoor(N_2, N_4, N_{10}), RECON$
$I_t + 8 - I_t + 11$	CVE-2014-6271 on N_{17} , SSH brute-force attack on N_{12} ,
	login (N_{17}, N_{12}) , backdoor (N_{17}, N_{12})
$I_t + 12 - X + 16$	CVE-2010-0426 exploit on N_{12} , RECON
	SQL-Injection on N_{18} , login (N_{18}) , backdoor (N_{18})
$I_t + 17 - I_t + 22$	RECON, CVE-2015-1427 on N_{25} , login(N_{25})
	RECON, CVE-2017-7494 exploit on N_{27} , login(N_{27})

Table 1: Attacker actions to emulate an intrusion.

Learning curves of training defender policies against static attackers.

Threshold Properties of the Learned Policies

Open Challenge: Self-Play between Attacker and Defender

Learning curves of training the the attacker and the defender simultaneously in self-play.
Conclusions & Future Work

Conclusions:

- We develop a *method* to find effective strategies for intrusion prevention
 - (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement learning and (5) domain randomization and generalization.
- We show that self-learning can be successfully applied to network infrastructures.
 - Self-play reinforcement learning in Markov security game
- Key challenges: stable convergence, sample efficiency, complexity of emulations, large state and action spaces, theoretical understanding of optimal policies

Our research plans:

- Extending the theoretical model
 - Relaxing simplifying assumptions (e.g. multiple defender actions)
- Evaluation on real world infrastructures

References

 Finding Effective Security Strategies through Reinforcement Learning and Self-Play²⁰

Preprint open access: https://arxiv.org/abs/2009.08120

 Learning Intrusion Prevention Policies through Optimal Stopping²¹

Preprint open access:

https://arxiv.org/pdf/2106.07160.pdf

²⁰Kim Hammar and Rolf Stadler. "Finding Effective Security Strategies through Reinforcement Learning and Self-Play". In: International Conference on Network and Service Management (CNSM). Izmir, Turkey, Nov. 2020.

²¹Kim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv: 2106.07160 [cs.AI].