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Use Case: Intrusion Detection

I Defender = IDS:
I System Operator with task of

detecting intrusions

I IT Infrastructure:
I Consist of a set of components (also

called “subsystems”).
I The infrastructure is equipped with a

network of sensors
I Sensors report anomalies/alerts to

the defender
I Each component has a set of

vulnerabilities

I Attacker:
I Can attack vulnerable components
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System Model

I Infrastructure components
(Subsystems)
I T = {t1, t2, . . . tmax}

I Vulnerabilities
I I = {I1, I2, . . . , Imax}

I Attacks
I A = T × I

I Sensors
I S = {s1, s2, . . . , smax}
I Each sensor reports “alarm” or “no

alarm”.
I Each sensor si ∈ S corresponds to a

vulnerabilitiy Ii ∈ I
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Example Infrastructure: One Subsystem, One Sensor and
One Vulnerability

I Infrastructure components
(Subsystems)
I T = {t1}

I Vulnerabilities
I I = {I1}

I Attacks
I A = {a = (t1, I1)}

I Sensors
I S = {s1}

Attacker

Defender

alerts

Subsystem t1
Sensor s1

Vulnerability I1

Gateway
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Finite Extensive-Form Game Model

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (10,−15) (5,−10) (0, 0) (0,−5) (0, 0)

attack continue

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend continue defend continue continuedefendcontinuedefend

I Players: N = {Attacker,Defender,Nature} = {1, 2, 3}
I Action sets:

I A1 = {Attack,Continue}, A2 = {Alert→ Defend,Alert→
Continue,No Alert→ Defender,No Alert→ Continue, },
A3 = {Alert,No Alert}

I Nature’s pre-defined strategy:
I f (Alert|Attack) = 2

3 , f (Alert|Continue) = 1
3
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Finite Extensive-Form Game Model

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (5,−10)(10,−15) (0, 0) (0,−5) (0, 0)

attack continue

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend continue defend continue continuedefendcontinuedefend



7/25

Extensive & Strategic Form of the Finite Game Model
Extensive Form:

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (10,−15) (5,−10) (0, 0) (0,−5) (0, 0)

attack continue

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend continue defend continue continuedefendcontinuedefend

Strategic Form:

[ DC DD CD CC

A 0,−5
3 −5, 5 5,−25

3 10,−15
C 5

3 ,−
10
3

5
3 ,−

20
3 0,−10

3 0, 0

]
(1)
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Extensive Form:

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (10,−15) (5,−10) (0, 0) (0,−5) (0, 0)

attack continue

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend continue defend continue continuedefendcontinuedefend

Strategic Form:

[ DC DD CD CC

A 0,−5
3 −5, 5 5,−25

3 10,−15
C 5

3 ,−
10
3

5
3 ,−

20
3 0,−10

3 0, 0

]
(2)

=⇒ No pure Nash equilibrium
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Unique Mixed Nash Equilibrium Computed using
Lemke-Howson’s Algorithm

x

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (5,−10)(10,−15) (0, 0) (0,−5) (0, 0)

attack, 1
5 continue, 1

5

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend,
0.86

continue,
0.14

defend,
0

continue,
1

continue,
1

defend,
0

continue,
0.14

defend,
0.86

Mixed Nash equilibrium (s∗
1 , s∗

2 ) ∈ ∆(A1)×∆(A2):

I s∗
1 (Attack) = 1

5 , s
∗
1 (Continue) = 4

5

I s∗
2 (Defend|Alert) = 0.86, s∗

2 (Continue|Alert) = 0.14,
s∗
2 (Defend|No Alert) = 0, s∗

2 (Continue|No Alert) = 1.
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Limitations of the Finite Game Model

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (5,−10)(10,−15) (0, 0) (0,−5) (0, 0)

attack, 1
5 continue, 1

5

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3

defend,
0.86

continue,
0.14

defend,
0

continue,
1

continue,
1

defend,
0

continue,
0.14

defend,
0.86

Limitations:
I Hard to analyze for large systems (scalability)
I Hard to define all of the parameters in the model
I Equilibria depend greatly on the payoff-values, are they

realistic?
I Does mixed equilibria make sense?
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Limitations of the Finite Game Model

Attacker

Nature Nature

Defender.1 Defender.2

(−5, 5) (10,−15) (−5, 5) (5,−10)(10,−15) (0, 0) (0,−5) (0, 0)

attack, 1
5 continue, 1

5

alert, 1
3 no alert, 2

3no alert, 1
3alert, 2

3
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0.86
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defend,
0
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1

continue,
1
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0

continue,
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defend,
0.86

Limitations:
I Hard to analyze for large systems (scalability)
I Hard to define all of the parameters in the model

Alternative model: continuous-kernel game
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Continuous-Kernel Game Model (1/3)
I Attacker Action Space: A1 = RAmax

+ instead of
A1 = {a1, . . . ,Amax}

I Defender Action Space: A2 = RDmax
+ instead of

A2 = {a1, . . . ,Dmax}

I Nature/(Sensor Network) Action Space:
I A3 = RAmax ×Amax

+ instead of A3 = {alert, no alert} × A2 = P̄
I P̄ij represent the alert-weight that nature put on attack j when

attack i occurred.
I P̄ = I if the sensors are perfect.
I Attack detection metric: dq(i) = P̄ii∑Amax

j
P̄ij

I For notational convenience, define:

P =
{
pi,j = −p̄i,j if i = j
pi,j = p̄i,j otherwise

(3)
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Continuous-Kernel Game Model (1/3)
I Attacker Action Space: A1 = RAmax

+ instead of
A1 = {a1, . . . ,Amax}, pure strategy aA ∈ A1

I Defender Action Space: A2 = RDmax
+ instead of
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Continuous-Kernel Game Model (2/3)

I Defender cost of being attacked: cD ∈ RAmax

I Attacker gain of successful attack: cA ∈ RAmax

I Vulnerability matrix: Q ∈ RAmax ×Amax diagonal matrix that
models degree of vulnerability per attack

I Defense matrix: Q̄ ∈ {0, 1}Amax ×Dmax where Q̄i ,j = 1 if
defense detects the attack and 0 otherwise.

I Cost of defender actions: α ∈ RDmax
+

I Cost of attacker actions: β ∈ RAmax
+

I False alarm weight: γ, defines how much to penalize false
alarms
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Continuous-Kernel Game Model (3/3)
I Objective: Minimize costs rather than maximize utilities

I Defender Cost Function:

JD(aA, aD,P) = (6)
γ(aA)T PQ̄aD︸ ︷︷ ︸

false alarm

+ (aD)Tdiag(α)aD︸ ︷︷ ︸
cost of defense

+ cD(QaA − Q̄aD)︸ ︷︷ ︸
cost of attack

I Attacker Cost Function:

JA(aA, aD,P) = (7)
− γ(aA)T PQ̄aD︸ ︷︷ ︸

detected

+ (aA)Tdiag(β)aA︸ ︷︷ ︸
cost of attack

+ cA(Q̄aD −QaA)︸ ︷︷ ︸
gain of attack

I Summary: Continuous-kernel general-sum game with strictly
convex cost functions.
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I Objective: Minimize costs rather than maximize utilities

I Defender Cost Function:

JD(aA, aD,P) = (12)
γ(aA)T PQ̄aD︸ ︷︷ ︸

false alarm
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detected

+ (aA)Tdiag(β)aA︸ ︷︷ ︸
cost of attack

+ cA(Q̄aD −QaA)︸ ︷︷ ︸
gain of attack

I Summary: Continuous-kernel general-sum game with convex
cost functions.
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Equilibrium Analysis (1/3)
I Since JA, JD are strictly convex, the best-response

correspondences are obtained from the first order conditions:
I

∇aD (JD(aA, aD,P)) = 0 (14)
∇aD (γ(aA)T PQ̄aD + (aD)Tdiag(α)aD + cD(QaA − Q̄aD)) = 0
γ(aA)T PQ̄ + (aD)T (2diag(α))− cDQ̄ = 0 (aD) = (2diag(α))−1cDQ̄ − γ(2diag(α))−1Q̄T PT aA

=⇒ BrD(aA,P) = {cDQ̄(2diag(α))−1 − γ(2diag(α))−1Q̄T PT aA}

and, analogously for the attacker:

∇aA(JD(aA, aD,P)) = 0 (15)
− γPQ̄aD + (aA)T (2diag(β))− cAQ = 0
aA = (2diag(β))−1cAQ + γ(2diag(β))−1PQ̄aD

=⇒ BrA(aD,P) = {(2diag(β))−1cAQ + γ(2diag(β))−1PQ̄aD}
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Equilibrium Analysis (2/3)

I For notational convenience, define

θD(cDQ̄, α) , [(cDQ̄)1/(2α1), . . . , (cDQ̄)Dmax/(2αDmax )]
θA(cAQ, β) , [(cAQ)1/(2β1), . . . , (cAQ)Amax/(2βAmax )]

I Then we can write the best response functions as:

BrD(aA,P) = [θD − γ(diag(2α))−1Q̄T PT aA]+

BrA(aD,P) = [θA + γ(diag(2β))−1PQ̄aD]+

I The set of Nash equilibria is

{(aA, aD) | aA ∈ BrA(aD,P), aD ∈ BrD(aA,P)} (20)

I How large is this set? What do the elements of this set look
like?



15/25

Equilibrium Analysis (3/3)

I For notational convenience, define

θD(cDQ̄, α) , [(cDQ̄)1/(2α1), . . . , (cDQ̄)Dmax/(2αDmax )]
θA(cAQ, β) , [(cAQ)1/(2β1), . . . , (cAQ)Amax/(2βAmax )]

I Then we can write the best response functions as:

BrD(aA,P) = [θD − γ(diag(2α))−1Q̄T PT aA]+

BrA(aD,P) = [θA + γ(diag(2β))−1PQ̄aD]+

I The set of Nash equilibria is

{(aA, aD) | aA ∈ BrA(aD,P), aD ∈ BrD(aA,P)} (21)

I How large is this set? What do the elements of this set look
like?



16/25

Main Contribution of the Paper

Theorem
There exists a unique NE. Further, if:

γ < (22)

min
[

mini θ
D

maxi (diag(2α))−1Q̄T PT θA ,
maxi θ

A

maxi (diag(2β))−1(−P)Q̄θD

]

Then the unique NE (aD∗, aA∗) satisfy aD,∗ > 0 and aA,∗ > 0 and
is given by:

aA∗ = (I + Z )−1[θA + γ(diag(2β))−1PQ̄θD] (23)
aD∗ = (I + Z̄ )−1[θD − γ(diag(2α))−1Q̄T PT θA] (24)

where Z , γ2(diag(2β))−1PQ̄(diag(2α))−1Q̄T PT and
Z̄ , γ2(diag(2α))−1Q̄T PT (diag(2β))−1PQ̄.
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Rosen’s Existence Theorem23

Theorem (Pure Nash Equilibrium Existence for
Continuous-Kernel Games)
For each player i ∈ N, let Ai be a compact and convex subset of a
finite-dimensional Euclidean space, and the cost functional
J i : A1 × . . .× AN → R be jointly continuous in all its arguments
and strictly convex in ai for every aj ∈ Aj , j ∈ N, j 6= i . Then, the
associated N-person nonzero-sum game admits a Nash equilibrium
in pure strategies.

2T. Başar and G.J. Olsder. Dynamic Noncooperative Game Theory. Classics in Applied Mathematics. Society
for Industrial and Applied Mathematics, 1999. isbn: 9780898714296. url:
https://books.google.se/books?id=k1oF5AxmJlYC.

3J. B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”. In:
Econometrica 33.3 (1965), pp. 520–534. issn: 00129682, 14680262. url:
http://www.jstor.org/stable/1911749.

https://books.google.se/books?id=k1oF5AxmJlYC
http://www.jstor.org/stable/1911749
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Proof of Theorem 1, Existence

I Existence of Pure NE:
I AA,AD are convex subsets of a Euclidean space

I JA, JD are jointly continuous in all their arguments and strictly
convex in aA, aD respectively,

I AA,AD are not compact.

I However, JD(aA, aD ,P) and JA(aA, aD ,P) grow unbounded
as |a| → ∞

I =⇒ by Rosen’s existence theorem, the game has a pure Nash
equilibrium.
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I =⇒ by Rosen’s existence theorem, the game has a pure Nash
equilibrium.
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Rosen’s Uniqueness Theorem (1/3) - Pseudo-gradient4

Definition (Pseudo-Gradient g(a) and Pseudo-Gradient
Operator ∇̄)
Let ∇̄ be the pseudo-gradient operator, defined through its
application on the cost vector J as:

∇̄J ,



∂J1(a)
∂a1

∂J2(a)
∂a2...

∂J|N|(a)
∂a|N|

 = g(a) (25)

4J. B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”. In:
Econometrica 33.3 (1965), pp. 520–534. issn: 00129682, 14680262. url:
http://www.jstor.org/stable/1911749.

http://www.jstor.org/stable/1911749
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Proof Preliminaries (2/3) - Pseudo-Hessian5
Definition (Pseudo-Hessian)
Let G(a) be the Jacobian of the pseudo-gradient g(a) with respect
to a (also called pseudo-Hessian):

G(a) ,


∂2J1(a)

∂a21
∂2J1(a)
∂a1∂a2 . . . ∂2J1(a)

∂a1∂a|N|
... . . . ...

∂2J|N|(a)
∂a|N|∂a1

∂2J|N|(a)
∂a|N|∂a2 . . .

∂2J|N|(a)
∂a2|N|

 (26)

Definition (Symmetrized Pseudo-Hessian)
Let G(a) be the Jacobian of the pseudo-gradient g(a) with respect
to a, i.e. the pseudo-Hessian, then the symmetrized pseudo-hessian
is defined as:

G(a) , G(a) + G(a)T (27)

5J. B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”. In:
Econometrica 33.3 (1965), pp. 520–534. issn: 00129682, 14680262. url:
http://www.jstor.org/stable/1911749.

http://www.jstor.org/stable/1911749
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Proof Preliminaries (3/3) - Rosen’s Uniqueness Theorem6

Theorem (Unique Pure Nash Equilibrium Existence for
Continuous-Kernel Games)
If the symmetrized pseudo-Hessian G(a) is positive definite, the
pure equilibrium of a continuous-kernel game with strictly convex
cost functions is unique.

6J. B. Rosen. “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games”. In:
Econometrica 33.3 (1965), pp. 520–534. issn: 00129682, 14680262. url:
http://www.jstor.org/stable/1911749.

http://www.jstor.org/stable/1911749
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Proof of Theorem 1, Uniqueness

The pseudo-gradient is:

∇̄J(a) =
[

(γ(aA)T PQ̄)1 + (aD )T (2α1)− (cD Q̄)1 . . . (γ(aA)T PQ̄)Dmax + (aD )T (2αDmax )− (cD Q̄)Dmax
−(γPQ̄aD )1 + (aA)T (2β1)− (cAQ)1 . . . −(γPQ̄aD )Amax + (aA)T (2βAmax )− (cAQ)Amax

]
(28)
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The pseudo-gradient is:
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(γ(aA)T PQ̄)1 + (aD )T (2α1)− (cD Q̄)1 . . . (γ(aA)T PQ̄)Dmax + (aD )T (2αDmax )− (cD Q̄)Dmax
−(γPQ̄aD )1 + (aA)T (2β1)− (cAQ)1 . . . −(γPQ̄aD )Amax + (aA)T (2βAmax )− (cAQ)Amax

]
(29)

The pseudo-hessian is:

G(a) =



2α1 0 0 |

0 . . . 0 | γPQ̄
0 0 2αDmax |
— — — | — — —

| 2β1 0 0
−γPQ̄ | 0 . . . 0

| 0 0 2βAmax


(30)
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−(γPQ̄aD )1 + (aA)T (2β1)− (cAQ)1 . . . −(γPQ̄aD )Amax + (aA)T (2βAmax )− (cAQ)Amax

]
(31)

The pseudo-hessian is:

G(a) =



2α1 0 0 |

0 . . . 0 | γPQ̄
0 0 2αDmax |
— — — | — — —

| 2β1 0 0
−γPQ̄ | 0 . . . 0

| 0 0 2βAmax


(32)

Clearly, G(a) = G(a) + G(a)T = 4diag([α, β]T ), which is positive
definite.
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Proof of Theorem 1, Uniqueness
The pseudo-gradient is:

∇̄J(a) =
[

(γ(aA)T PQ̄)1 + (aD )T (2α1)− (cD Q̄)1 . . . (γ(aA)T PQ̄)Dmax + (aD )T (2αDmax )− (cD Q̄)Dmax
−(γPQ̄aD )1 + (aA)T (2β1)− (cAQ)1 . . . −(γPQ̄aD )Amax + (aA)T (2βAmax )− (cAQ)Amax

]
(33)

The pseudo-hessian is:

G(a) =



2α1 0 0 |

0 . . . 0 | γPQ̄
0 0 2αDmax |
— — — | — — —

| 2β1 0 0
−γPQ̄ | 0 . . . 0

z | 0 0 2βAmax


(34)

Clearly, G(a) = G(a) + G(a)T = 4diag([α, β]T ), which is positive
definite. Thus, by Rosen’s Uniqueness theorem, the NE is unique
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Proof of Theorem 1, Analytical Characterization of NE

Recall the Best Response Functions:

BrD(aA,P) = [θD − γ(diag(2α))−1Q̄T PT aA]+

BrA(aD,P) = [θA + γ(diag(2β))−1PQ̄aD]+
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BrA(aD,P) = [θA + γ(diag(2β))−1PQ̄aD]+

Substitute aD in BrA(aD,P) with BrD(aA,P), we then obtain
the fixed point equation:

aA∗ = BrA(BrD(aA∗,P),P)
= [θA + γ(diag(2β))−1PQ̄[θD − γ(diag(2α))−1Q̄T PT aA∗]+]+
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Proof of Theorem 1, Analytical Characterization of NE

Recall the Best Response Functions:

BrD(aA,P) = [θD − γ(diag(2α))−1Q̄T PT aA]+

BrA(aD,P) = [θA + γ(diag(2β))−1PQ̄aD]+

Substitute aD in BrA(aD,P) with BrD(aA,P), we then obtain
the fixed point equation:

aA∗ = BrA(BrD(aA∗,P),P)
= [θA + γ(diag(2β))−1PQ̄[θD − γ(diag(2α))−1Q̄T PT aA∗]+]+

Solving for aA∗ and similarly for aD∗ yields:

aA∗ = (I + Z )−1[θA + γ(diag(2β))−1PQ̄θD] (35)
aD∗ = (I + Z̄ )−1[θD − γ(diag(2α))−1Q̄T PT θA] (36)
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Conclusion

I Topic:
I The paper provides a game theoretic analysis of intrusion

detection

I Contributions:
I A finite extensive form non-cooperative game model
I A infinite continuous-kernel strategic non-cooperative game

model
I Existence and uniqueness proof of NE
I Repeated game simulation
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Discussion

I General questions/Comments?

I Are there other existence/uniqueness theorems that
could have been used?

I Are cyber attacks continuous?
I The continuous-kernel model provide a richer analytical

analysis
I But, does it make sense in practice?

I Which Model makes most sense:
I Finite game model with NE in mixed strategies
I Infinite game model with NE in pure strategies


