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Challenges: Evolving and Automated Attacks

I Challenges
I Evolving & automated attacks
I Complex infrastructures
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Goal: Automation and Learning

I Challenges
I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods
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Approach: Self-Learning Security Systems
I Challenges

I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach: Self-Learning
Systems:
I real-time telemetry
I stream processing
I theories from control/game/decision

theory
I computational methods (e.g.

dynamic programming &
reinforcement learning)

I automated network management
(SDN, NFV, etc.)
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Our Framework for Automated Network Security
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Our Previous Work
I Finding Effective Security Strategies through Reinforcement

Learning and Self-Play1

I Learning Intrusion Prevention Policies through Optimal
Stopping2

I A System for Interactive Examination of Learned Security
Policies3

I Intrusion Prevention Through Optimal Stopping4

I Learning Security Strategies through Game Play and Optimal
Stopping5

1Kim Hammar and Rolf Stadler. “Finding Effective Security Strategies through Reinforcement Learning and
Self-Play”. In: International Conference on Network and Service Management (CNSM 2020). Izmir, Turkey, 2020.

2Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. Izmir, Turkey, 2021.

3Kim Hammar and Rolf Stadler. “A System for Interactive Examination of Learned Security Policies”. In:
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. 2022, pp. 1–3. doi:
10.1109/NOMS54207.2022.9789707.

4Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

5Kim Hammar and Rolf Stadler. “Learning Security Strategies through Game Play and Optimal Stopping”. In:
Proceedings of the ML4Cyber workshop, ICML 2022, Baltimore, USA, July 17-23, 2022. PMLR, 2022.

http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf
https://doi.org/10.1109/NOMS54207.2022.9789707
https://doi.org/10.1109/TNSM.2022.3176781


5/14

This Paper: Learning in Dynamic IT Environments6
I Challenge: operational IT environments are dynamic

I Components may fail, load patterns can shift, etc.
I Contribution: we present a framework for learning and

updating security policies in dynamic IT environments
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6Kim Hammar and Rolf Stadler. “An Online Framework for Adapting Security Policies in Dynamic IT
Environments”. In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki,
Greece, 2022.
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Learning in Dynamic IT Environments
Algorithm 1: High-level execution of the framework
Input: emulator : method to create digital twin

ϕ: system identification algorithm
φ: policy learning algorithm

1 Algorithm (emulator , ϕ, φ)
2 do in parallel
3 DigitalTwin(emulator)
4 SystemIdProcess(ϕ)
5 LearningProcess(φ)
6 end
1 Procedure DigitalTwin(emulator)
2 Loop
3 π ← ReceiveFromLearningProcess()
4 ht ← CollectTrace(π)
5 SendToSystemIdProcess(ht)
6 UpdateDigitalTwin(emulator)
7 EndLoop
1 Procedure SystemIdProcess(ϕ)
2 Loop
3 h1, h2, . . .← ReceiveFromDigitalTwin()
4 M← ϕ(h1, h2, . . .) // estimate model
5 SendToLearningProcess(M)
6 EndLoop
1 Procedure LearningProcess(φ)
2 Loop
3 M← ReceiveFromSystemIdProcess()
4 π ← φ(M) // learn policy π
5 SendToDigitalTwin(π)
6 EndLoop
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The Digital Twin
Algorithm 3: High-level execution of the framework
Input: emulator : method to create digital twin

ϕ: system identification algorithm
φ: policy learning algorithm

1 Algorithm (emulator , ϕ, φ)
2 do in parallel
3 DigitalTwin(emulator)
4 SystemIdProcess(ϕ)
5 LearningProcess(φ)
6 end
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2 Loop
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6 EndLoop
1 Procedure LearningProcess(φ)
2 Loop
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Creating a Digital Twin of the Target System
I Emulate hosts with docker containers
I Emulate IPS and vulnerabilities with

software
I Network isolation and traffic shaping

through NetEm in the Linux kernel
I Enforce resource constraints using

cgroups.
I Emulate client arrivals with Poisson

process
I Internal connections are full-duplex

& loss-less with bit capacities of 1000
Mbit/s

I External connections are full-duplex
with bit capacities of 100 Mbit/s &
0.1% packet loss in normal operation
and random bursts of 1% packet loss
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The System Identification Process
Algorithm 4: High-level execution of the framework
Input: emulator : method to create digital twin

ϕ: system identification algorithm
φ: policy learning algorithm

1 Algorithm (emulator , ϕ, φ)
2 do in parallel
3 DigitalTwin(emulator)
4 SystemIdProcess(ϕ)
5 LearningProcess(φ)
6 end
1 Procedure DigitalTwin(emulator)
2 Loop
3 π ← ReceiveFromLearningProcess()
4 ht ← CollectTrace(π)
5 SendToSystemIdProcess(ht)
6 UpdateDigitalTwin(emulator)
7 EndLoop
1 Procedure SystemIdProcess(ϕ)
2 Loop
3 h1, h2, . . .← ReceiveFromDigitalTwin()
4 M← ϕ(h1, h2, . . .) // estimate model
5 SendToLearningProcess(M)
6 EndLoop
1 Procedure LearningProcess(φ)
2 Loop
3 M← ReceiveFromSystemIdProcess()
4 π ← φ(M) // learn policy π
5 SendToDigitalTwin(π)
6 EndLoop



8/14

System Model

I We model the evolution of the system with a discrete-time
dynamical system.

I We assume a Markovian system with stochastic dynamics and
partial observability.

Stochastic
System
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Noisy
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System Identification

f̂
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I The distribution fO of defender observations (system metrics)
is unknown.

I We fit a Gaussian mixture distribution f̂O as an estimate of fO
in the target system.

I For each state s, we obtain the conditional distribution f̂O|s
through expectation-maximization.
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The Policy Learning Process
Algorithm 5: High-level execution of the framework
Input: emulator : method to create digital twin

ϕ: system identification algorithm
φ: policy learning algorithm

1 Algorithm (emulator , ϕ, φ)
2 do in parallel
3 DigitalTwin(emulator)
4 SystemIdProcess(ϕ)
5 LearningProcess(φ)
6 end
1 Procedure DigitalTwin(emulator)
2 Loop
3 π ← ReceiveFromLearningProcess()
4 ht ← CollectTrace(π)
5 SendToSystemIdProcess(ht)
6 UpdateDigitalTwin(emulator)
7 EndLoop
1 Procedure SystemIdProcess(ϕ)
2 Loop
3 h1, h2, . . .← ReceiveFromDigitalTwin()
4 M← ϕ(h1, h2, . . .) // estimate model
5 SendToLearningProcess(M)
6 EndLoop
1 Procedure LearningProcess(φ)
2 Loop
3 M← ReceiveFromSystemIdProcess()
4 π ← φ(M) // learn policy π
5 SendToDigitalTwin(π)
6 EndLoop
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Learning Effective Defender Policies
I Optimization problem:

I Each stopping time = one
defensive action

I Maximize reward of
stopping times
τL, τL−1, . . . , τ1:

π∗
l ∈ arg max

πl

Eπl

[
τL−1∑
t=1

γt−1RC
st ,st+1,L

+ γτL−1RS
sτL ,sτL+1,L + . . .+

τ1−1∑
t=τ2+1

γt−1RC
st ,st+1,1 + γτ1−1RS

sτ1 ,sτ1+1,1

]

I Optimization methods:
Reinforcement learning,
dynamic programming,
computational game theory,
etc.
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Putting it all together: Learning in Dynamic Environments
1. Changes in the target system are monitored.
2. When changes are detected, the emulation is updated.
3. Attack and defense scenarios are run in the emulation to

collect data.
4. The system model and the defender policy are updated

periodically with the new data.
Policy Learning
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Environment
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Configuration I
and change eventsPolicy π

Policy evaluation &
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Automated
security policy
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Use Case: Intrusion Prevention

I A Defender owns an infrastructure

I Consists of connected components
I Components run network services
I Defender defends the infrastructure

by monitoring and active defense
I Has partial observability

I An Attacker seeks to intrude on the
infrastructure

I Has a partial view of the
infrastructure

I Wants to compromise specific
components

I Attacks by reconnaissance,
exploitation and pivoting
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Results: Learning in a Dynamic IT Environment
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Results from running our framework for 50 hours in the digital
twin/emulation.
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Conclusions

I We present a framework for learning
and updating security policies in
dynamic IT environments

I We apply the method to an intrusion
prevention use case.

I We show numerical results in a
realistic emulation environment.

I We design a solution framework guided
by the theory of optimal stopping.
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