

Self-Learning Systems for Cyber Defense Kim Hammar, Rolf Stadler

CDIS Fall Retreat 2022 Oct 27-28

Self-Learning Security Systems: Current Landscape

Levels of security automation

No automation.

Manual detection Manual prevention. No alerts. No automatic responses. Lack of tools.

Operator assistance.

Manual prevention.

Audit logs. Security tools.

Partial automation.

Manual detection. System has automated functions for detection/prevention

but requires manual Intrusion detection systems.

Intrusion prevention systems.

2000s-Now

High automation.

System automatically updates itself.

Automated attack detection. updating and configuration. Automated attack mitigation.

1980s

1990s

Research

Challenges: Evolving and Automated Attacks

Challenges

- Evolving & automated attacks
- Complex infrastructures

Goal: Automation and Learning

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Approach: Self-Learning Security Systems

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Our Approach: Self-Learning Systems:

- real-time telemetry
- stream processing
- theories from control/game/decision theory
- computational methods (e.g. dynamic programming & reinforcement learning)
- automated network management (SDN, NFV, etc.)

The Intrusion Prevention Problem

The Intrusion Prevention Problem

4/27

- Use Case & Motivation:
 - Use case: Intrusion prevention
 - Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning
- **Summary of results so far**
 - Comparison with related work
 - Intrusion prevention through optimal multiple stopping
 - Dynkin games and learning in dynamic environments
 - System for policy validation
- Outlook on future work
 - Extend use case
 - Rollout-based methods

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Conclusions Takeaways

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

Emulate hosts with docker containers

- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

- Emulate **hosts** with docker containers
- Emulate IPS and vulnerabilities with software
- Network isolation and traffic shaping through NetEm in the Linux kernel
- Enforce resource constraints using cgroups.
- Emulate client arrivals with Poisson process
- Internal connections are full-duplex & loss-less with bit capacities of 1000 Mbit/s
- External connections are full-duplex with bit capacities of 100 Mbit/s & 0.1% packet loss in normal operation and random bursts of 1% packet loss

System Model

- We model the evolution of the system with a discrete-time dynamical system.
- We assume a Markovian system with stochastic dynamics and partial observability.

System Model

- We model the evolution of the system with a discrete-time dynamical system.
- We assume a Markovian system with stochastic dynamics and partial observability.
- A Partially Observed Markov Decision Process (POMDP)
 If attacker is static.
- A Partially Observed Stochastic Game (POSG)
 - If attacker is dynamic.

Our Approach for Automated Network Security

System Identification

- The distribution f_O of defender observations (system metrics) is unknown.
- We fit a Gaussian mixture distribution \hat{f}_O as an estimate of f_O in the target infrastructure.
- ▶ For each state *s*, we obtain the conditional distribution $\hat{f}_{O|s}$ through expectation-maximization.

The Simulation System

SIMULATION SYSTEM

Reinforcement Learning & Numerical methods

Simulations:

- Markov decision processes
- Stochastic games

Learning/computing defender strategies:

- Reinforcement learning
- Stochastic approximation
- Computational game theory
- Dynamic programming
- Optimization

Outline

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

Outline

Use Case & Motivation:

- Use case: Intrusion prevention
- Self-learning security systems: current landscape

Our Approach

- Network emulation and digital twin
- Stochastic game simulation and reinforcement learning

Summary of results so far

- Comparison with related work
- Intrusion prevention through optimal multiple stopping
- Dynkin games and learning in dynamic environments
- System for policy validation

Outlook on future work

- Extend use case
- Rollout-based methods

1: Intrusion Prevention through Optimal Stopping¹

Intrusion Prevention as an Optimal Stopping Problem:

- A stochastic process $(s_t)_{t=1}^T$ is observed sequentially
- Two options per t: (i) continue to observe; or (ii) stop
- Find the optimal stopping time τ*:

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^{\mathcal{C}} + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^{\mathcal{S}} \right]$$

where $\mathcal{R}^{\textit{S}}_{\textit{ss}'}$ & $\mathcal{R}^{\textit{C}}_{\textit{ss}'}$ are the stop/continue rewards

Stop action = Defensive action

¹Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. lzmir, Turkey, 2021.

1: Intrusion Prevention through Optimal Stopping²

States: Intrusion $s_t \in \{0, 1\}$, terminal \emptyset .

Observations:

- Number of IPS Alerts $o_t \in \mathcal{O}$
- o_t is drawn from r.v. $O \sim f_O(\cdot|s_t)$.
- Based on history h_t of observations, the defender can compute the belief b_t(s_t) = P[s_t|h_t].
- Actions: $A_1 = A_2 = \{S, C\}$
- Rewards: security and service.

Transition probabilities: Follows from game dynamics.

²Kim Hammar and Rolf Stadler. "Learning Intrusion Prevention Policies through Optimal Stopping". In: International Conference on Network and Service Management (CNSM 2021). http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. lzmir, Turkey, 2021. Convex Stopping set with Threshold $\alpha_1^* \in \mathcal{B}$

Convex Stopping set with Threshold $\alpha_1^* \in \mathcal{B}$

Bang-Bang Controller with Threshold $\alpha_1^* \in \mathcal{B}$

Learning Curves in Simulation and Emulation

2: Intrusion Prevention through Optimal Multiple ${\rm Stopping}^3$

- Intrusion Prevention through Multiple Optimal Stopping:
 - Maximize reward of stopping times T1, T1 = 1, ..., T1:

$$\pi_{I}^{*} \in \arg\max_{\pi_{I}} \mathbb{E}_{\pi_{I}} \left[\sum_{t=1}^{\tau_{L}-1} \gamma^{t-1} \mathcal{R}_{s_{t}, s_{t+1}, L}^{C} + \gamma^{\tau_{L}-1} \mathcal{R}_{s_{\tau_{L}}, s_{\tau_{L}+1}, L}^{S} + \dots + \sum_{t=\tau_{2}+1}^{\tau_{1}-1} \gamma^{t-1} \mathcal{R}_{s_{t}, s_{t+1}, 1}^{C} + \gamma^{\tau_{1}-1} \mathcal{R}_{s_{\tau_{1}}, s_{\tau_{1}+1}, L}^{S} \right]$$

Each stopping time = one defensive action

³Kim Hammar and Rolf Stadler. "Intrusion Prevention Through Optimal Stopping". In: *IEEE Transactions on Network and Service Management* 19.3 (2022), pp. 2333–2348. DOI: 10.1109/TNSM.2022.3176781.

Comparison against State-of-the-art Algorithms

3: Intrusion Prevention through Optimal Multiple Stopping and Game-Play⁴

Optimal stopping (Dynkin) game:

- Dynamic attacker
- Stop actions of the defender determine when to take defensive actions
- Goal: find Nash Equilibrium (NE) strategies and game value

$$\begin{aligned} \mathcal{J}_{1}(\pi_{1,l},\pi_{2,l}) &= \mathbb{E}_{(\pi_{1,l},\pi_{2,l})} \left[\sum_{t=1}^{T} \gamma^{t-1} \mathcal{R}_{l_{t}}(s_{t},\boldsymbol{a}_{t}) \right] \\ B_{1}(\pi_{2,l}) &= \operatorname*{arg\,max}_{\pi_{1,l}\in\Pi_{1}} \mathcal{J}_{1}(\pi_{1,l},\pi_{2,l}) \\ B_{2}(\pi_{1,l}) &= \operatorname{arg\,min}_{I} \mathcal{J}_{1}(\pi_{1,l},\pi_{2,l}) \end{aligned}$$

$$\begin{aligned} \pi_{1,l} &= \arg\min_{\pi_{2,l} \in \Pi_2} J_1(\pi_{1,l}, \pi_{2,l}) \\ & (\pi_{1,l}^*, \pi_{2,l}^*) \in B_1(\pi_{2,l}^*) \times B_2(\pi_{1,l}^*) \quad \mathsf{NE} \end{aligned}$$

⁴Kim Hammar and Rolf Stadler. "Learning Security Strategies through Game Play and Optimal Stopping". In: Proceedings of the ML4Cyber workshop, ICML 2022, Baltimore, USA, July 17-23, 2022. PMLR, 2022.

Converge Rates and Comparison with State-of-the-art Algorithms

4: Learning in Dynamic IT Environments⁵

⁵Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT Environments". In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki, Greece, 2022.

4: Learning in Dynamic IT Environments⁶

ł	Algorithm 1: High-level execution of the framework
Ī	nput: emulator: method to create digital twin
	φ : system identification algorithm
	ϕ : policy learning algorithm
1 Algorithm (emulator, φ, ϕ)	
2	do in parallel
3	DIGITALTWIN(emulator)
4	SystemIdProcess(φ)
5	LearningProcess(ϕ)
6	end
1	Procedure DIGITALTWIN(emulator)
2	Loop
3	$\pi \leftarrow \text{ReceiveFromLearningProcess}()$
4	$h_t \leftarrow \text{CollectTrace}(\pi)$
5	SendToSystemIdProcess (h_t)
6	UPDATEDIGITALTWIN(emulator)
7	EndLoop
1 Procedure SystemIDPROCESS(φ)	
2	Loop
3	$h_1, h_2, \ldots \leftarrow \text{ReceiveFromDigitalTwin}()$
4	$\mathcal{M} \leftarrow \varphi(h_1, h_2,)$ // estimate model
5	SendToLearningProcess(M)
6	EndLoop
1	Procedure LEARNINGPROCESS(ϕ)
2	Loop
3	$\mathcal{M} \leftarrow \text{ReceiveFromSystemIdProcess}()$
4	$ \pi \leftarrow \phi(\mathcal{M})$ // learn policy π
5	SENDTODIGITALTWIN (π)
6_	EndLoop

⁶Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT Environments". In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki, Greece, 2022.

Learning in Dynamic IT Environments⁷

Results from running our framework for 50 hours in the digital twin/emulation.

⁷Kim Hammar and Rolf Stadler. "An Online Framework for Adapting Security Policies in Dynamic IT Environments". In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki, Greece, 2022.

Current and Future Work

1. Closing the gap to reality

- Additional defender actions
- Utilize SDN controller and NFV-based defenses
- Increase observation space and attacker model
- More heterogeneous client population

2. Extend solution framework

- Model-predictive control
- Rollout-based techniques
- Extend system identification algorithm

3. Extend theoretical results

- Exploit symmetries and causal structure
- Utilize theory to improve sample efficiency
- Decompose solution framework hierarchically

Conclusions

- We develop a method to automatically learn security strategies.
- We apply the method to an intrusion prevention use case.
- We show numerical results in a realistic emulation environment.
- We design a solution framework guided by the theory of optimal stopping.
- We present several theoretical results on the structure of the optimal solution.

