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Self-Learning Security Systems: Current Landscape

Levels of security automation

No automation.
Manual detection.
Manual prevention.

No alerts.
No automatic responses.

Lack of tools.

1980s 1990s 2000s-Now Research

Operator assistance.
Manual detection.
Manual prevention.

Audit logs.
Security tools.

Partial automation.
System has automated functions

for detection/prevention
but requires manual

updating and configuration.
Intrusion detection systems.
Intrusion prevention systems.

High automation.
System automatically

updates itself.
Automated attack detection.
Automated attack mitigation.
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Challenges: Evolving and Automated Attacks
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Goal: Automation and Learning
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Approach: Self-Learning Security Systems
I Challenges

I Evolving & automated attacks
I Complex infrastructures

I Our Goal:
I Automate security tasks
I Adapt to changing attack methods

I Our Approach: Self-Learning
Systems:
I real-time telemetry
I stream processing
I theories from control/game/decision

theory
I computational methods (e.g.

dynamic programming &
reinforcement learning)

I automated network management
(SDN, NFV, etc.)
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Example Use Case: Intrusion Prevention
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The Intrusion Prevention Problem
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The Intrusion Prevention Problem
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Our Approach for Automated Network Security
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Creating a Digital Twin of the Target Infrastructure
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Creating a Digital Twin of the Target Infrastructure
I Emulate hosts with docker containers
I Emulate IPS and vulnerabilities with

software
I Network isolation and traffic shaping

through NetEm in the Linux kernel
I Enforce resource constraints using

cgroups.
I Emulate client arrivals with Poisson

process
I Internal connections are full-duplex
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I External connections are full-duplex
with bit capacities of 100 Mbit/s &
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Our Approach for Automated Network Security
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System Model

I We model the evolution of the system with a discrete-time
dynamical system.

I We assume a Markovian system with stochastic dynamics and
partial observability.
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System Model
I We model the evolution of the system with a discrete-time

dynamical system.
I We assume a Markovian system with stochastic dynamics and

partial observability.

I A Partially Observed Markov Decision Process (POMDP)
I If attacker is static.

I A Partially Observed Stochastic Game (POSG)
I If attacker is dynamic.
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Our Approach for Automated Network Security
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System Identification

f̂
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Probability distribution of # IPS alerts weighted by priority ot
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I The distribution fO of defender observations (system metrics)
is unknown.

I We fit a Gaussian mixture distribution f̂O as an estimate of fO
in the target infrastructure.

I For each state s, we obtain the conditional distribution f̂O|s
through expectation-maximization.
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The Simulation System

s1,1 s1,2 s1,3 . . . s1,n
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Simulation System
Reinforcement Learning &

Numerical methods

I Simulations:
I Markov decision processes
I Stochastic games

I Learning/computing defender strategies:
I Reinforcement learning
I Stochastic approximation
I Computational game theory
I Dynamic programming
I Optimization



12/27

Outline
I Use Case & Motivation:

I Use case: Intrusion prevention
I Self-learning security systems: current landscape

I Our Approach
I Network emulation and digital twin
I Stochastic game simulation and reinforcement learning

I Summary of results so far
I Comparison with related work
I Intrusion prevention through optimal multiple stopping
I Dynkin games and learning in dynamic environments
I System for policy validation

I Outlook on future work
I Extend use case
I Rollout-based methods

I Conclusions
I Takeaways



12/27

Outline
I Use Case & Motivation:

I Use case: Intrusion prevention
I Self-learning security systems: current landscape

I Our Approach
I Network emulation and digital twin
I Stochastic game simulation and reinforcement learning

I Summary of results so far
I Comparison with related work
I Intrusion prevention through optimal multiple stopping
I Dynkin games and learning in dynamic environments
I System for policy validation

I Outlook on future work
I Extend use case
I Rollout-based methods

I Conclusions
I Takeaways



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)

Xiao et al. 2021.
(RL approach to APT )

etc. 2022.



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)

Xiao et al. 2021.
(RL approach to APT )

etc. 2022.



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)

Xiao et al. 2021.
(RL approach to APT )

etc. 2022.

Our work 2020-2022
only

2 actions
3 states!



12/27

Related Work on Self-Learning Security Systems

External validity

Use case/
control/
learning

complexity

Goal

Georgia et al. 2000.
(Next generation

intrusion detection:
reinforcement learning)

Xu et al. 2005.
(An RL approach to

host-based
intrusion detection)

Servin et al. 2008.
(Multi-agent RL for
intrusion detection)

Malialis et al. 2013.
(Decentralized
RL response to
DDoS attacks)

Zhu et al. 2019.
(Adaptive

Honeypot engagement)

Apruzzese et al. 2020.
(Deep RL to
evade botnets)

Xiao et al. 2021.
(RL approach to APT )

etc. 2022.

Our work 2020-2022

Planned work

only
2 actions
3 states!



13/27

1: Intrusion Prevention through Optimal Stopping1
I Intrusion Prevention as an Optimal Stopping Problem:

I A stochastic process (st)T
t=1 is observed sequentially

I Two options per t: (i) continue to observe; or (ii) stop
I Find the optimal stopping time τ∗:

τ∗ = arg max
τ

Eτ

[
τ−1∑
t=1

γt−1RC
st st+1

+ γτ−1RS
sτ sτ

]
where RS

ss′ & RC
ss′ are the stop/continue rewards

I Stop action = Defensive action

Intrusion eventtime-step t = 1 Intrusion ongoing

t
t = T

Early stopping times Stopping times that
interrupt the intrusion

Episode

1Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:
International Conference on Network and Service Management (CNSM 2021).
http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. Izmir, Turkey, 2021.

http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf
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1: Intrusion Prevention through Optimal Stopping2

Stochastic
System
(Markov)

Noisy
Sensor

Optimal
filter

Stopping strategy
at ∈ {S,C}

IPS alerts
ot

state
st

belief
bt ∈ [0, 1]

I States: Intrusion st ∈ {0, 1}, terminal ∅.
I Observations:

I Number of IPS Alerts ot ∈ O
I ot is drawn from r.v. O ∼ fO(·|st).
I Based on history ht of observations, the defender can compute

the belief bt(st) = P[st |ht ].
I Actions: A1 = A2 = {S,C}
I Rewards: security and service.
I Transition probabilities: Follows from game dynamics.
2Kim Hammar and Rolf Stadler. “Learning Intrusion Prevention Policies through Optimal Stopping”. In:

International Conference on Network and Service Management (CNSM 2021).
http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf. Izmir, Turkey, 2021.

http://dl.ifip.org/db/conf/cnsm/cnsm2021/1570732932.pdf
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Convex Stopping set with Threshold α∗1 ∈ B

b(1)
0 1

belief space B = [0, 1]
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Convex Stopping set with Threshold α∗1 ∈ B

b(1)
0 1

belief space B = [0, 1]

S1

α∗1
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Bang-Bang Controller with Threshold α∗1 ∈ B

0

1

2

1

ak = π∗k(b)

b∗1
threshold

b (belief)

continue

stop
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Learning Curves in Simulation and Emulation
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2: Intrusion Prevention through Optimal Multiple
Stopping3
I Intrusion Prevention

through Multiple Optimal
Stopping:
I Maximize reward of

stopping times
τL, τL−1, . . . , τ1:

π∗l ∈ arg max
πl

Eπl

[
τL−1∑
t=1

γt−1RC
st ,st+1,L

+ γτL−1RS
sτL ,sτL+1,L + . . .+

τ1−1∑
t=τ2+1

γt−1RC
st ,st+1,1 + γτ1−1RS

sτ1 ,sτ1+1,1

]

I Each stopping time = one
defensive action

0 1

∅

t ≥ 1
lt > 0

t ≥ 2
lt > 0intrusion starts

Qt = 1

final stop
lt = 0

intrusion
prevented
lt = 0

3Kim Hammar and Rolf Stadler. “Intrusion Prevention Through Optimal Stopping”. In: IEEE Transactions on
Network and Service Management 19.3 (2022), pp. 2333–2348. doi: 10.1109/TNSM.2022.3176781.

https://doi.org/10.1109/TNSM.2022.3176781
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Structural Result: Optimal Multi-Threshold Policy &
Nested Stopping Sets
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Structural Result: Optimal Multi-Threshold Policy &
Nested Stopping Sets
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Comparison against State-of-the-art Algorithms
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3: Intrusion Prevention through Optimal Multiple Stopping
and Game-Play4

I Optimal stopping (Dynkin) game:
I Dynamic attacker
I Stop actions of the defender determine

when to take defensive actions
I Goal: find Nash Equilibrium (NE)

strategies and game value

J1(π1,l , π2,l) = E(π1,l ,π2,l )

[ T∑
t=1

γt−1Rlt (st , at)
]

B1(π2,l) = arg max
π1,l∈Π1

J1(π1,l , π2,l)

B2(π1,l) = arg min
π2,l∈Π2

J1(π1,l , π2,l)

(π∗1,l , π∗2,l) ∈ B1(π∗2,l)× B2(π∗1,l) NE

π̃2,l ∈ B2(π1,l)

π2,l

π1,l

π̃1,l ∈ B1(π2,l)

π̃′2,l ∈ B2(π′1,l)

π′2,l

π′1,l

π̃′1,l ∈ B1(π′2,l)

. . .

π∗2,l ∈ B2(π∗1,l)

π∗1,l ∈ B1(π∗2,l)

4Kim Hammar and Rolf Stadler. “Learning Security Strategies through Game Play and Optimal Stopping”. In:
Proceedings of the ML4Cyber workshop, ICML 2022, Baltimore, USA, July 17-23, 2022. PMLR, 2022.
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Structure of Best Response Strategies
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Structure of Best Response Strategies
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Converge Rates and Comparison with State-of-the-art
Algorithms
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4: Learning in Dynamic IT Environments5

Policy Learning

Agent

Environment

System Identification
s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Digital Twin
and Attack
Scenarios

Target
System

Model
M

Traces h1, h2, . . .Policy π

Configuration I
and change eventsPolicy π

Policy evaluation &
Data collection

Automated
security policy

5Kim Hammar and Rolf Stadler. “An Online Framework for Adapting Security Policies in Dynamic IT
Environments”. In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki,
Greece, 2022.
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4: Learning in Dynamic IT Environments6
Algorithm 1: High-level execution of the framework
Input: emulator : method to create digital twin

ϕ: system identification algorithm
φ: policy learning algorithm

1 Algorithm (emulator , ϕ, φ)
2 do in parallel
3 DigitalTwin(emulator)
4 SystemIdProcess(ϕ)
5 LearningProcess(φ)
6 end
1 Procedure DigitalTwin(emulator)
2 Loop
3 π ← ReceiveFromLearningProcess()
4 ht ← CollectTrace(π)
5 SendToSystemIdProcess(ht)
6 UpdateDigitalTwin(emulator)
7 EndLoop
1 Procedure SystemIdProcess(ϕ)
2 Loop
3 h1, h2, . . .← ReceiveFromDigitalTwin()
4 M← ϕ(h1, h2, . . .) // estimate model
5 SendToLearningProcess(M)
6 EndLoop
1 Procedure LearningProcess(φ)
2 Loop
3 M← ReceiveFromSystemIdProcess()
4 π ← φ(M) // learn policy π
5 SendToDigitalTwin(π)
6 EndLoop

6Kim Hammar and Rolf Stadler. “An Online Framework for Adapting Security Policies in Dynamic IT
Environments”. In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki,
Greece, 2022.
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Learning in Dynamic IT Environments7
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Results from running our framework for 50 hours in the digital
twin/emulation.

7Kim Hammar and Rolf Stadler. “An Online Framework for Adapting Security Policies in Dynamic IT
Environments”. In: International Conference on Network and Service Management (CNSM 2022). Thessaloniki,
Greece, 2022.
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Current and Future Work

Timest

st+1

st+2

st+3

. . .

rt+1

rt+2

rt+3

rrT

1. Closing the gap to reality
I Additional defender actions
I Utilize SDN controller and NFV-based defenses
I Increase observation space and attacker model
I More heterogeneous client population

2. Extend solution framework
I Model-predictive control
I Rollout-based techniques
I Extend system identification algorithm

3. Extend theoretical results
I Exploit symmetries and causal structure
I Utilize theory to improve sample efficiency
I Decompose solution framework hierarchically
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Conclusions

I We develop a method to
automatically learn security strategies.

I We apply the method to an intrusion
prevention use case.

I We show numerical results in a
realistic emulation environment.

I We design a solution framework guided
by the theory of optimal stopping.

I We present several theoretical results
on the structure of the optimal
solution.

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

... ... ... ... ...

Emulation

Target
System

Model Creation &
System Identification

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

Simulation &
Learning


