Learning Intrusion Prevention Policies Through Optimal Stopping CDIS Research Workshop

Kim Hammar & Rolf Stadler

kimham@kth.se & stadler@kth.se

Division of Network and Systems Engineering KTH Royal Institute of Technology

Oct 14, 2021

Challenges: Evolving and Automated Attacks

Challenges:

- Evolving & automated attacks
- Complex infrastructures

Goal: Automation and Learning

Challenges

- Evolving & automated attacks
- Complex infrastructures

Our Goal:

- Automate security tasks
- Adapt to changing attack methods

Approach: Game Model & Reinforcement Learning

Challenges:

- Evolving & automated attacks
- Complex infrastructures

• Our Goal:

- Automate security tasks
- Adapt to changing attack methods

• Our Approach:

- Model network attack and defense as games.
- Use reinforcement learning to learn policies.
- Incorporate learned policies in self-learning systems.

Use Case: Intrusion Prevention

A Defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure by monitoring and active defense

An Attacker seeks to intrude on the infrastructure

- Has a partial view of the infrastructure
- Wants to compromise specific components
- Attacks by reconnaissance, exploitation and pivoting

Use Case: Intrusion Prevention

A Defender owns an infrastructure

- Consists of connected components
- Components run network services
- Defender defends the infrastructure

We formulate this use case as an **Optimal Stopping** problem

mnastructure

- Has a partial view of the infrastructure
- Wants to compromise specific components
- Attacks by reconnaissance, exploitation and pivoting

The General Problem:

- A Markov process $(s_t)_{t=1}^T$ is observed sequentially
- Two options per t: (i) continue to observe; or (ii) stop
- Find the optimal stopping time τ*:

$$\tau^* = \arg\max_{\tau} \mathbb{E}_{\tau} \left[\sum_{t=1}^{\tau-1} \gamma^{t-1} \mathcal{R}_{s_t s_{t+1}}^{\mathcal{C}} + \gamma^{\tau-1} \mathcal{R}_{s_\tau s_\tau}^{\mathcal{S}} \right]$$
(1)

where $\mathcal{R}_{\textit{ss'}}^{\textit{S}}$ & $\mathcal{R}_{\textit{ss'}}^{\textit{C}}$ are the stop/continue rewards

History:

Studied in the 18th century to analyze a gambler's fortune

- Formalized by Abraham Wald in 1947
- Since then it has been generalized and developed by (Chow, Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)

Applications & Use Cases:

Change detection, machine replacement, hypothesis testing, gambling, selling decisions, queue management, advertisement scheduling, the secretary problem, etc.

- **The General Problem**:
 - A Markov process $(s_t)_{t=1}^T$ is observed sequentially
 - Two options per t: (i) continue to observe; or (ii) stop
- History:
 - Studied in the 18th century to analyze a gambler's fortune
 - Formalized by Abraham Wald in 1947¹
 - Since then it has been generalized and developed by (Chow², Shiryaev & Kolmogorov³, Bather⁴, Bertsekas⁵, etc.)

¹Abraham Wald. Sequential Analysis. Wiley and Sons, New York, 1947.

²Y. Chow, H. Robbins, and D. Siegmund. "Great expectations: The theory of optimal stopping". In: 1971.

³Albert N. Shirayev. *Optimal Stopping Rules*. Reprint of russian edition from 1969. Springer-Verlag Berlin, 2007.

⁴ John Bather. Decision Theory: An Introduction to Dynamic Programming and Sequential Decisions. USA: John Wiley and Sons, Inc., 2000. ISBN: 0471976490.

⁵Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. 3rd. Vol. I. Belmont, MA, USA: Athena Scientific, 2005.

- **The General Problem**:
 - A Markov process $(s_t)_{t=1}^T$ is observed sequentially
 - Two options per t: (i) continue to observe; or (ii) stop

History:

- Studied in the 18th century to analyze a gambler's fortune
- Formalized by Abraham Wald in 1947
- Since then it has been generalized and developed by (Chow, Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)

Applications & Use Cases:

Change detection⁶, selling decisions⁷, queue management⁸, advertisement scheduling⁹, etc.

⁶Alexander G. Tartakovsky et al. "Detection of intrusions in information systems by sequential change-point methods". In: Statistical Methodology 3.3 (2006). ISSN: 1572-3127. DOI: https://doi.org/10.1016/j.stamet.2005.05.003. URL: https://www.sciencedirect.com/science/article/pii/S1572312705000493.

⁷Jacques du Toit and Goran Peskir. "Selling a stock at the ultimate maximum". In: *The Annals of Applied Probability* 19.3 (2009). ISSN: 1050-5164. DOI: 10.1214/08-aap566. URL: http://dx.doi.org/10.1214/08-AAP566.

⁸Arghyadip Roy et al. "Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision Processes". In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

⁹Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. "Multiple stopping time POMDPs: Structural results & application in interactive advertising on social media". In: *Automatica* 95 (2018), pp. 385-398. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2018.06.013. URL: https://www.sciencedirect.com/science/article/pii/S0005109818303054.

- **The General Problem:**
 - A Markov process $(s_t)_{t=1}^T$ is observed sequentially
 - Two options per t: (i) continue to observe; or (ii) stop

History:

- Studied in the 18th century to analyze a gambler's fortune
- Formalized by Abraham Wald in 1947
- Since then it has been generalized and developed by (Chow, Shiryaev & Kolmogorov, Bather, Bertsekas, etc.)

Applications & Use Cases:

Change detection¹⁰, selling decisions¹¹, queue management¹², advertisement scheduling¹³, intrusion prevention¹⁴ etc.

¹⁰Alexander G. Tartakovsky et al. "Detection of intrusions in information systems by sequential change-point methods". In: Statistical Methodology 3.3 (2006). ISSN: 1572-3127. DOI: https://doi.org/10.1016/j.stamet.2005.05.003. URL: https://www.sciencedirect.com/science/article/pii/S1572312705000493.

¹¹ Jacques du Toit and Goran Peskir. "Selling a stock at the ultimate maximum". In: The Annals of Applied Probability 19.3 (2009). ISSN: 1050-5164. DOI: 10.1214/08-aap566. URL: http://dx.doi.org/10.1214/08-AAP566.

¹²Arghyadip Roy et al. "Online Reinforcement Learning of Optimal Threshold Policies for Markov Decision Processes". In: CoRR (2019). http://arxiv.org/abs/1912.10325. eprint: 1912.10325.

¹³Vikram Krishnamurthy, Anup Aprem, and Sujay Bhatt. "Multiple stopping time POMDPs: Structural results & application in interactive advertising on social media". In: Automatica 95 (2018), pp. 385–398. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.automatica.2018.06.013. URL: https://www.sciencedirect.com/science/article/pii/S0005109818303054.

¹⁴Kim Hammar and Rolf Stadler. Learning Intrusion Prevention Policies through Optimal Stopping. 2021. arXiv: 2106.07160 [cs.AI].

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time
- ► The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDF

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time
- The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDF

Intrusion Prevention as Optimal Stopping Problem:

The system evolves in discrete time-steps.

Defender observes the infrastructure (IDS, log files, etc.).

- An intrusion occurs at an unknown time
- The defender can make L stops.

Each stop is associated with a defensive action

- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDF

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make L stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

- The system evolves in discrete time-steps
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- ► The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time.
- The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

- The system evolves in discrete time-steps.
- Defender observes the infrastructure (IDS, log files, etc.).
- An intrusion occurs at an unknown time
- The defender can make *L* stops.
- Each stop is associated with a defensive action
- The final stop shuts down the infrastructure.
- Based on the observations, when is it optimal to stop?
- We formalize this problem with a POMDP

States:

• Intrusion state $s_t \in \{0, 1\}$, terminal \emptyset .

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

$$\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $I_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, I_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

$$\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

$$\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

▶ "Stop" (S) and "Continue" (C)

Rewards:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

 $\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

Rewards:

Reward: security and service. Penalty: false alarms and intrusions

Transition probabilities:

 Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)

 $\blacktriangleright \max \mathbb{E}_{\pi_{\theta}} \left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t) \right], \ T_{\emptyset}$

Objective and Horizon:

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

▶ Intrusion state $s_t \in \{0, 1\}$, terminal Ø.

Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$, Login attempts Δz , stops remaining $l_t \in \{1, ..., L\}$, $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, l_t, t)$

Actions:

"Stop" (S) and "Continue" (C)

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

• max
$$\mathbb{E}_{\pi_{\theta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)\right], T_{\emptyset}$$

States:

• Intrusion state $s_t \in \{0,1\}$, terminal \emptyset .

• Observations:

Severe/Warning IDS Alerts $(\Delta x, \Delta y)$ Login attempts Δz , stops remaining $I_t \in \{1, ..., L\}$,

We analyze the optimal policy using optimal stopping theory

Rewarus:

- Reward: security and service. Penalty: false alarms and intrusions
- Transition probabilities:
 - Bernoulli process (Q_t)^T_{t=1} ~ Ber(p) defines intrusion start I_t ~ Ge(p)
- Objective and Horizon:

$$\max \mathbb{E}_{\pi_{ heta}}\left[\sum_{t=1}^{T_{\emptyset}} r(s_t, a_t)
ight], T_{\emptyset}$$

$$\pi^*_l(h_t) = S \iff ilde{h}_t \geq eta^*_l, l = 1$$

$$\widetilde{h}_t = \Delta x_t + \Delta y_t + \Delta z_t$$

 $\Delta x =$ Severe IDS alerts at time t
 $\Delta y =$ Warning IDS alerts at time t
 $\Delta z =$ Login attempts at time t

$$\pi_I^*(h_t) = S \iff ilde{h}_t \geq eta_I^*, I \in 1, 2$$

$$\widetilde{h}_t = \Delta x_t + \Delta y_t + \Delta z_t$$

 $\Delta x =$ Severe IDS alerts at time t
 $\Delta y =$ Warning IDS alerts at time t
 $\Delta z =$ Login attempts at time t

$$\widetilde{h}_t = \Delta x_t + \Delta y_t + \Delta z_t$$

 $\Delta x =$ Severe IDS alerts at time t
 $\Delta y =$ Warning IDS alerts at time t
 $\Delta z =$ Login attempts at time t

The Target Infrastructure

Topology:

30 Application Servers, 1 Gateway/IDS (Snort), 3 Clients, 1 Attacker, 1 Defender

Services

31 SSH, 8 HTTP, 1 DNS, 1 Telnet, 2 FTP, 1 MongoDB, 2 SMTP, 2 Teamspeak 3, 22 SNMP, 12 IRC, 1 Elasticsearch, 12 NTP, 1 Samba, 19 PostgreSQL

RCE Vulnerabilities

1 CVE-2010-0426, 1 CVE-2014-6271, 1 SQL Injection, 1 CVE-2015-3306, 1 CVE-2016-10033, 1 CVE-2015-5602, 1 CVE-2015-1427, 1 CVE-2017-7494

5 Brute-force vulnerabilities

Operating Systems

23 Ubuntu-20, 1 Debian 9:2, 1 Debian Wheezy, 6 Debian Jessie, 1 Kali

Target infrastructure.

Emulating the Client Population

Client	Functions	Application servers
1	HTTP, SSH, SNMP, ICMP	N_2, N_3, N_{10}, N_{12}
2	IRC, PostgreSQL, SNMP	$N_{31}, N_{13}, N_{14}, N_{15}, N_{16}$
3	FTP, DNS, Telnet	N_{10}, N_{22}, N_4

Table 1: Emulated client population; each client interacts with application servers using a set of functions at short intervals.

Emulating the Defender's Actions

I_t	Action	Command in the Emulation	
3	Reset users	deluser -remove-home <username></username>	
2	Blacklist IPs	iptables -A INPUT -s <ip> -j DROP</ip>	
1	Block gateway	iptables -A INPUT -i ethO -j DROP	

Table 2: Commands used to implement the defender's stop actions in the emulation.

Static Attackers to Emulate Intrusions

Time-steps t	NoviceAttacker	ExperiencedAttacker	ExpertAttacker
$1-I_t \sim Ge(0.2)$	(Intrusion has not started)	(Intrusion has not started)	(Intrusion has not started)
$I_t + 1 - I_t + 6$	RECON1, brute-force attacks (SSH, Telnet, FTP)	RECON ₂ , CVE-2017-7494 exploit on N ₄ ,	RECON ₃ , CVE-2017-7494 exploit on N ₄ ,
	on N ₂ , N ₄ , N ₁₀ , login(N ₂ , N ₄ , N ₁₀),	brute-force attack (SSH) on N_2 , login(N_2 , N_4),	login(N ₄), backdoor(N ₄)
	$backdoor(N_2, N_4, N_{10})$	$backdoor(N_2, N_4)$, RECON ₂	RECON ₃ , SQL Injection on N_{18}
$I_t + 7 - I_t + 10$	RECON1, CVE-2014-6271 on N17,	CVE-2014-6271 on N17, login(N17)	login(N ₁₈), backdoor(N ₁₈),
	login(N ₁₇), backdoor(N ₁₇)	backdoor(N_{17}), SSH brute-force attack on N_{12}	RECON3, CVE-2015-1427 on N25
$I_t + 11 - I_t + 14$	SSH brute-force attack on N_{12} , $login(N_{12})$	login(N12), CVE-2010-0426 exploit on N12,	login(N ₂₅), backdoor(N ₂₅),
	CVE-2010-0426 exploit on N ₁₂ , RECON1	RECON ₂ , SQL Injection on N_{18}	RECON3, CVE-2017-7494 exploit on N27
$I_t + 15 - I_t + 16$		login(N18), backdoor(N18)	login(N ₂₇), backdoor(N ₂₇)
$I_t + 17 - I_t + 19$		$\operatorname{Recon}_2,$ CVE-2015-1427 on $N_{25},$ $login(N_{25})$	

Table 3: Attacker actions to emulate intrusions.

Learning Intrusion Prevention Policies through Optimal Stopping

Learning curves of training defender policies against static attackers, L = 3.

Threshold Properties of the Learned Policies, L = 3

Conclusions & Future Work

Conclusions:

- We develop a *method* to find learn intrusion prevention policies
 - (1) emulation system; (2) system identification; (3) simulation system; (4) reinforcement learning and (5) domain randomization and generalization.
- We formulate intrusion prevention as a multiple stopping problem
 - We present a POMDP model of the use case
 - We apply the stopping theory to establish structural results of the optimal policy

Our research plans:

- Extending the theoretical model
 - Relaxing simplifying assumptions (e.g. more dynamic defender actions)
 - Active attacker
- Evaluation on real world infrastructures