
Conflict free p2p replicated datatypes

Kim Hammar
kimham@kth.se

Maxime Dufour
maximed@kth.se

May 22, 2017

1 Introduction
Conflict Free or Commutative Replicated Data Types (CRDTs) are special data types designed
to support concurrent operations on replicated data without risking conflicts or requiring explicit
upfront synchronization. A casual description of CRDT is that they enable consensus-free repli-
cation. More formally, a CRDT is a data type where all concurrent operations commute with one
another [2].

This report presents an implementation of a P2P system for collaborative editing as part of a
course on Distributed Computing and P2P systems. The system is based upon an implementation
of the Logoot-Undo CRDT[3] and a causal broadcast implementation. Furthermore, the imple-
mentation uses a specific peer-sampling service called Croupier[1]. Croupier is used to implement a
Gossiping Best Effort Broadcast, which the causal broadcast depends on. A significant part of the
implementation consists of simulation scenarios to demonstrate the system and obtain confidence
in the correctness of the implementation.

The system is implemented in Java using Kompics framework1. The source code for the imple-
mentation can be found on GitHub2

2 System Overview

2.1 Assumptions
We assume the lower level networking protocol TCP in combination with IP-routers in the network
to provide a perfect-link abstraction. All our network-based algorithms assume access to the
perfect-link abstraction.

2.2 Network Topology
The system follows a typical peer-to-peer network topology where each node has a partial view
of the network with a set of neighbors c, where 1 ≤ c ≤ N and N being the size of the network.
In the figure below an instance of the system with N = 8 and c = 2 is depicted. As mentioned,
each peer uses a peer-sampling service, Croupier, which will provide each peer with a new set of
neighbors periodically.

Each peer follows a very simple behavior. After performing an edit to the document, the
peer will broadcast the edit-operation to all of its current neighbors. When receiving an edit
from someone else, a peer will apply it to its local replica of the document. The guarantees
of the Logoot-Undo CRDT in combination with the causal-delivery guarantee of the broadcast
abstraction, ensures that all editions will commute when applying it to the local replicas. In figure
1, one of the nodes is broadcasting an insertion with the line "content" into the document to its
neighbors. In addition to updating its local replica when receiving an edit from another peer, peers
will also make sure that all of their neighbors have received the update by relaying it to them, this
functionality is built-in to the broadcast abstraction.

1http://kompics.sics.se/current/index.html
2https://github.com/62maxime/ID2210_Peers-To-Peers

1

http://kompics.sics.se/current/index.html
https://github.com/62maxime/ID2210_Peers-To-Peers
http://kompics.sics.se/current/index.html
https://github.com/62maxime/ID2210_Peers-To-Peers


{patch 1, ops=[insert, "content", id]

{
p
atch

 1
, o

p
s=

[in
sert, "co

n
ten

t", id
]

Figure 1: Peer to Peer architecture

3 Implementation

3.1 Component Hierarchy
Figure 2 depicts the hierarchy of Kompics components at each peer. Croupier port and Network
ports are provided by the skeleton code. AppComp uses its CausalOrderReliableBroadcast port
to broadcast updates of the Logoot-Undo document to other peers. Croupier provides the GBEB
component with periodic uniform samples of other peers in the system, which enables broadcast
of updates through the network without requiring each peer to have a complete view of all peers
in the network.

2



CausalOrderReliableBroadcast

CausalOrderReliableBroadcast

ReliableBroadcast

ReliableBroadcast

GossipingBestEffortBroadcast

GossipingBestEffortBroadcast

NetworkCroupier

GBEB

EagerRB

NoWaitingCB

Logoot−

Undo

Document
AppComp

Peer

Figure 2: Kompics component hierarchy of a peer

3.2 Logoot-Undo
In src/main/java/se/kth/app/logoot the classes and algorithms implementing the Logoot-Undo
solution explained in the paper[3] is located. The Kompics component editing a logoot document
(AppComp.java in our case) will handle delivery of Patch, Undo and Redo events as well as store
the Logoot-Undo-Document itself.

Document is the main class of our Logoot-Undo implementation, it keeps all information re-
quired for the Logoot-Undo algorithm:

• site which is an Identifier that uniquely identifies a site

• documentLines which stores the real document in an ArrayList<String>

• idTable which stores the corresponding identifier of a document line

• hb which stores all patches delivered in a HashMap<UUID,Patch>

• cemetery which stores all lines that should not be visible in a HashMap<LineId,Integer>

3



4 Paper Review. Logoot-Undo: Distributed Collaborative Edit-
ing System on P2P networks[3]

4.1 Motivation
Concurrent editions in traditional collaborative editing systems might result in conflicts that are
not easily merged. CRDT (Commutative Replicated Data Type) is a category of algorithms that
proposes a different solution to this problem where it is required that all operations commute. As
all operations commute, no conflicts due to concurrent operations can happen and complex merge
functions are not needed.

Being able to undo operations in a collaborative editing system is evidently very important and
used feature in today’s editing systems. Previous class of CRDT algorithms for collaborative editing
have focused on supporting insert and delete operations but have lacked the undo feature. The
authors motivate their work on the Logoot-undo CRDT algorithm supporting "undo anywhere,
anytime" feature by recognizing that the undo feature is commonly a user-required feature, a
feature useful to recover from unexpected results that can occur during concurrent editing and a
way to deal with vandalism acts in open editing systems such as Wikipedia. Further more, previous
work on collaborative editing systems that do support the undo feature is based on other ideas
than the algorithm proposed in this paper.

4.2 Contributions
The main contribution of this paper is a CRDT algorithm, Logoot-undo, that apart from insert
and delete operations also support the undo feature. The proposed algorithm is a CRDT algorithm
and integrates the undo feature with the insert and delete operations as a commutative operation
that is suited for P2P systems with a high degree of churn. Additionally, the paper contributes
with the following:

• Correctness proof of the algorithm

• Evaluation of the algorithm compared to previous work that demonstrates that the proposed
algorithm is an improvement to previous solutions and demonstrates good performance of
edit operations.

• A new strategy for generating Line-Identifiers based on boundaries to reduce the pace in
which line identifiers grows in the document.

4.3 Solution
The authors propose an algorithm, Logoot-Undo, which belongs to a framework of algorithms
implementing logical data structures referred to as "CRDTs" by previous related work. This
entails that the algorithm is based on operations that are naturally commutative and don’t require
synchronization and complex merge operations. An essential part of the commutativity of insert
and delete operations of the Logoot-Undo algorithm is the line-identifier which by the algorithm
is guaranteed to be unique and totally ordered. This property of the line-identifier ensures that
concurrent insert-operations commute. The undo feature is based on an idea of "degrees". Firstly,
each patch of operations will have a degree indicating if the patch has been part of an undo, a redo,
multiple undoes, etc. Secondly, each line in the document will be associated with a visibility-degree
determining if the line is visible or not in the document, this visibility-degree is especially important
in case of distinct and concurrent undos/redos affecting the same line. The paper proposes a data
structure referred to as "Cemetery" for maintaining this degree information.

The strategy for generating line-identifiers is based on a concept of boundaries. The algorithm
for generating line-identifiers aspire to keep the growth in size of line-identifiers more manageable
than previous approaches which typically used the random-strategy. The boundary approach uses
a given boundary to limit the distance between two line identifiers.

Conducted evaluations are based on different types of pages of the Wikipedia editing system
and compares the proposed algorithm with previous work in terms of identifier-generation strategy
and performance. The evaluation uses an open API of Wikipedia to obtain XML files and then a
diff-algorithm to compute modifications between different versions of the document.

4



4.4 Strong Points
• The solution tries to be as generic as possible in terms of implementation and makes minimal

assumptions.

• The complexity analysis of the proposed algorithm and previous work is not comparable
since the structures are different and the complexity result depends on different parameters.
The authors therefore make sure to provide the reader with the possibility to compare the
algorithms by conducting extensive experiments and evaluations with concrete results that
are comparable. The experiments give high credibility due to the choice of documents to
evaluate on (Wikipedia) and selection of pages with high diversity for the tests.

• The authors prove the correctness of their work.

4.5 Weak Points
• As the results are based on an average of 10 runs, presentation of the distribution of the

results or the standard deviation is missing.

• Conclusions that can be drawn regarding the performance of Logoot-Undo compared to other
collaborative editing systems that support the undo feature is based on an assumption that
the number of concurrent editions is low. The evaluations give good indications of the strong
points of the Logoot-Undo algorithm but it is restricted to a single editing system which
exhibits limited number of concurrent edits which is of benefit for Logoot-Undo while not
as beneficial for the other algorithms that was compared with. This is due to the fact that
one of the data-structures used in Logoot-Undo, the Cemetery, is explicitly designed to have
low overhead in systems with few concurrent editions. Evaluations on editing systems with
different characteristics might give different results.

5 Implementation experience
We implemented the complete Logoot-Undo algorithm with associated causal reliable broadcast in
Java and simulated it in a peer-to-peer system.

Overall the Logoot-Undo algorithm was very smooth to implement in Java based on the pseudo-
code presented in the paper as well as general implementation suggestions provided. However a
few things that we noted during the implementation that might be worth noticing for other people
looking at implementing the Logoot-Undo algorithm:

construct(r,p,q,site) function

The constructId(r,p,q,site) function uses a for-loop iterating over the digits of r, where
r is a number in between the digits of p and the digits on q. In the paper there is not
mentioned that getting the correct digit for each iteration of the loop require some work, at
least in Java. In the paper it is simply written d := ith digit of r. Since r is just a number
(an integer in our Java implementation) the first intuition when implementing the pseudo
code is to convert the number to a string and extract the ith digit in the string, doing so is
not right since digits in this context does not necessarily have to be in the range 0 − 9. An
example:

p = 〈2, 4, 7〉〈59, 9, 5〉
q = 〈10, 5, 3〉〈20, 3, 6〉〈3, 3, 9〉
r = 102001

I.e the correct way to do the for-loop is to realize that the digit-size of r is 3 and the digits
extracted in the loop is as follows, first digit: 10, second digit: 20, third digit: 1. To do this
in our implementation we implemented a helper function getDigits(r, p ,q) that based
on the digits of p and q as well as the knowledge that r should be between p and q builds a
list of the digits of r that then can be accessed in the for-loop.

Gossiping Best-Effort-Broadcast When implementing this component, we have noticed that
the pseudo-code given has one bug, peers do not deliver their own messages. Indeed, after
receiving the broadcast request by the upper-layer, they put the message in the past set.

5



However, when they want to deliver messages, they deliver every message minus the ones
in the past set. To solve this problem we just trigger the Deliver event before adding the
message to the past set.

6 Simulation and Evaluation
Simulations were conducted with Kompics simulation framework. The tests mainly aim to verify
the claimed correctness properties for each component/algorithm, e.g. causal delivery, reliable
delivery, commuting editions to Logoot-document etc.

All the tests follow the same principle idea. Each test has a designated scenario located in
/src/test/java/se/kth/tests/testname/sim/scenarios/. The scenario typically will start a
bootstrap server, a number of peers and an observer-component. Some scenarios will also explicitly
simulate churn by killing and restarting nodes. Since each test simulates different properties and
behaves differently, the tests commonly are associated with a few components that are slight deriva-
tion of the original components and include for example saving local-state or simulating crashes,
these components can be found in /src/test/java/se/kth/tests/testname/sim/components/.
During the test the peers will typically perform some periodic communication according to the
general peer-algorithm with an extension that the peers store some information about their state
in a GlobalView object. The observer component will periodically check the status of the Glob-
alView and determine when the simulation can be terminated. Before termination the GlobalView
is stored in a result-map which then is used by the test to conduct verdict-checks and assertions to
verify the specific properties of the test. The assertions can be found in JUnit test-suites for each
test in /src/test/java/se/kth/tests/testname/sim/Testname.java.

6.1 Gossiping Best-Effort-Broadcast
The component Gossiping Best-Effort-Broadcast (GBEB) provides three guarantees:

• Validity only when the sender is correct

• No Duplication

• No Creation

To test this component we have used the following scenario. N correct peers will send M
distinct3 broadcast-messages to each other. During the verdict-checks the test will verify that
every peer (because they are correct) should have received all messages, i.e N ·M messages.

6.2 Eager Reliable Broadcast
The component Eager Reliable Broadcast (EagerRB) provides an additional guarantee in exten-
sion to the guarantees of the GBEB component: the Reliable Broadcast property. The Reliable
Broadcast property guarantees the Validity property even when the sender has failed. To test this
component two scenarios were used.

I The first scenario will have two groups of peers, one group of core peers that are correct during
the whole execution and a group of extension peers that are faulty and will be restarted4 during
the execution. At the end, the test asserts that all peers have received the same set of messages
(all messages since all peers are eventually restarted).

II The second scenario uses the same idea as the first scenario with a set of core-nodes and a set
of extension nodes. The scenario will first start all nodes and then kill of some of the extension
nodes, wait a while and then restart the killed extension nodes. Finally, all of the extension
nodes are killed. A difference compared to the first scenario is that when nodes are killed and
restarted they are restarted as completely new nodes, effectively simulating churn. During
its lifetime each peer will periodically send broadcasts. After the scenario is terminated, the
test verifies that all correct nodes delivered the same set of messages. This test models the
reliable-delivery property.

3intra and inter-peer thanks to random nonces
4Implementation detail: The restart of peers are simulated inside the HostMngrComp by destroying and recre-

ating components.

6



6.3 No-Waiting Causal Broadcast
The last component among the broadcast abstractions is the No Waiting Causal-Order Broadcast
(NoWaitingCB) that provide the property: Causal Order Delivery, which guarantees that messages
are delivered in causal order, respecting the happened-before (→) relation.

To test this component, a scenario in which N peers concurrently send M distinct broadcasts to
each other appended with Lamport timestamps is simulated. When the simulation is terminated
the test checks that all peers delivered the messages in causal order.

6.4 Logoot
The application component, AppComp maintains a Logoot-Undo document that is an implemen-
tation of the CRDT algorithm introduced in the paper [3]. Apart from unit tests on identifiers,
patch and document, we have provided simulation-tests covering:

• Verifying that insertion and deletion operations commute

• Verifying that undo and redo operation work properly

• Tests of the Cemetery.

Insertion and Deletion operations tests For each operation we have tested that concurrent
insertion and deletion operations were performed as they are supposed to by letting each peer
periodically and concurrently do editions to the same document and then upon the termination
of the scenario it is verified that each peer has the same document, i.e verified that all operations
commuted.

Undo and Redo operations tests These tests aims to prove correctness of the operations as
well as testing the degree of a patch introduced for this purpose. For each test, undo and redo
operations are performed concurrently by the peers. However the undo and redo operations are
delimited to operations previously made by the same peer performing the undo-operation. Upon
the termination of the simulation the test will check that the resulting document is consistent to
the patch executed.

Cemetery In the previous scenario the peers performed undo and redo operations concurrently
but on distinct operations. This test aims to demonstrate the behavior of concurrent patches that
considers the same operations. The scenario tested is based on the one introduced in the paper [3,
Figure 6]. In this scenario, there are two sites with the same initial document, they both perform
a patch that removes one line. Then, one site undo the other site’s patch. The verdict-checks of
the test will verify that the operations have commuted such that each peer has ended up with the
correct document as shown in the paper-scenario.

Other In our implementation, we have not done tests on the performance of the Logoot algo-
rithm, in the paper they have made their own tests on this point.

References
[1] Jim Dowling and Amir H. Payberah. Shuffling with a croupier: Nat-aware peer-sampling. In

ICDCS, pages 102–111. IEEE Computer Society, 2012.

[2] Marc Shapiro and Nuno M. Preguiça. Designing a commutative replicated data type. CoRR,
abs/0710.1784, 2007.

[3] Stephane Weiss, Pascal Urso, and Pascal Molli. Logoot-undo: Distributed collaborative editing
system on p2p networks. IEEE Trans. Parallel Distrib. Syst., 21(8):1162–1174, August 2010.

7


	Introduction
	System Overview
	Assumptions
	Network Topology

	Implementation
	Component Hierarchy
	Logoot-Undo

	Paper Review. Logoot-Undo: Distributed Collaborative Editing System on P2P networkslogootundo
	Motivation
	Contributions
	Solution
	Strong Points
	Weak Points

	Implementation experience
	Simulation and Evaluation
	Gossiping Best-Effort-Broadcast
	Eager Reliable Broadcast
	No-Waiting Causal Broadcast
	Logoot


