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Abstract—We study automated intrusion prevention using
reinforcement learning. Following a novel approach, we formulate
the interaction between an attacker and a defender as an optimal
stopping game and let attack and defense strategies evolve
through reinforcement learning and self-play. The game-theoretic
perspective allows us to find defender strategies that are effective
against dynamic attackers. The optimal stopping formulation
gives us insight into the structure of optimal strategies, which we
show to have threshold properties. To obtain the optimal defender
strategies, we introduce T-FP, a fictitious self-play algorithm
that learns Nash equilibria through stochastic approximation.
We show that T-FP outperforms a state-of-the-art algorithm for
our use case. Our overall method for learning and evaluating
strategies includes two systems: a simulation system where
defender strategies are incrementally learned and an emulation
system where statistics are produced that drive simulation runs
and where learned strategies are evaluated. We conclude that this
approach can produce effective defender strategies for a practical
IT infrastructure.

Index Terms—Network security, automation, optimal stopping,
reinforcement learning, game theory, Markov decision process,
Dynkin games, MDP, POMDP

I. INTRODUCTION

An organization’s security strategy has traditionally been
defined, implemented, and updated by domain experts [1].
Although this approach can provide basic security for an
organization’s communication and computing infrastructure,
a growing concern is that infrastructure update cycles become
shorter and attacks increase in sophistication [2]. Conse-
quently, the security requirements become increasingly dif-
ficult to meet. To address this challenge, significant efforts
have started to automate security frameworks and the process
of obtaining security strategies. Examples of this research
include: automated creation of threat models [3]; computation
of defender strategies using dynamic programming and control
theory [4], [5]; computation of exploits and corresponding
defenses through evolutionary methods [6], [7]; identification
of infrastructure vulnerabilities through attack simulations and
threat intelligence [8], [9]; computation of defender strategies
through game-theoretic methods [10], [11]; and use of ma-
chine learning techniques to estimate model parameters and
strategies [12], [13], [14].

In this paper, we present a novel approach to automatically
learn security strategies for an attacker and a defender. We
apply this approach to an intrusion prevention use case, which
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Fig. 1: The IT infrastructure and the actors in the use case.

involves the IT infrastructure of an organization (see Fig. 1).
The operator of this infrastructure, which we call the defender,
takes measures to protect it against a possible attacker while
providing services to a client population. (We use the term
”intrusion prevention” as suggested in the literature, e.g. in
[1], it means that the attacker is prevented from reaching its
goal, rather than prevented from accessing any part of the
infrastructure.)

We formulate the use case as an optimal stopping game,
i.e. a stochastic game where each player faces an optimal
stopping problem [15], [16], [17]. The stopping game formu-
lation enables us to gain insight into the structure of optimal
strategies, which we show to have threshold properties. To
obtain effective defender strategies, we use reinforcement
learning and self-play. Based on the threshold properties of
optimal strategies, we design an efficient self-play algorithm
that iteratively computes optimal defender strategies against a
dynamic attacker.

Our method for learning and evaluating strategies includes
building two systems (see Fig. 2). First, we develop an
emulation system where key functional components of the
target infrastructure are replicated. This system closely ap-
proximates the functionality of the target infrastructure and is
used to run attack scenarios and defender responses. These
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Fig. 2: Our approach for finding and evaluating intrusion
prevention strategies.

runs produce system measurements and logs from which we
estimate distributions of infrastructure metrics. We then use
the estimated distributions to instantiate the simulation model.
Second, we build a simulation system where game episodes
are simulated and strategies are incrementally learned. Learned
strategies are then extracted from the simulation system and
evaluated in the emulation system. (A video demonstration of
our software framework that implements the emulation and
simulation systems is available at [18].)

We make three contributions with this paper. First, we for-
mulate intrusion prevention as an optimal stopping game. This
novel formulation allows us a) to derive structural properties of
optimal strategies using results from optimal stopping theory;
and b) to find defender strategies that are effective against
attackers with dynamic strategies. We thus address a limitation
of many related works that consider static attackers only [19],
[20], [21], [22], [23], [14], [24], [25]. Second, we propose T-
FP, an efficient reinforcement learning algorithm that exploits
structural properties of optimal stopping strategies and out-
performs a state-of-the-art algorithm for our use case. Third,
we provide evaluation results from an emulated infrastructure.
This addresses a common drawback in related research, which
relies on simulations to learn and evaluate strategies [13], [14],
[26], [27], [19], [25], [28], [20], [29], [21], [22], [24], [11],
[30], [31], [32], [33], [34], [35], [36], [37].

II. THE INTRUSION PREVENTION USE CASE

We consider an intrusion prevention use case that involves
the IT infrastructure of an organization. The operator of this
infrastructure, which we call the defender, takes measures to
protect it against an attacker while providing services to a
client population (Fig. 1). The infrastructure includes a set
of servers that run the services and an Intrusion Prevention
System (IPS) that logs events in real-time. Clients access the
services through a public gateway, which also is open to the
attacker.

The attacker’s goal is to intrude on the infrastructure and
compromise its servers. To achieve this, the attacker explores
the infrastructure through reconnaissance and exploits vulner-
abilities while avoiding detection by the defender. The attacker

decides when to start an intrusion and may stop the intrusion at
any moment. During the intrusion, the attacker follows a pre-
defined strategy. When deciding the time to start or stop an
intrusion, the attacker considers both the gain of compromising
additional servers and the risk of getting detected. The optimal
strategy for the attacker is to compromise as many servers as
possible without being detected.

The defender continuously monitors the infrastructure
through accessing and analyzing IPS alerts and other statistics.
It can take a fixed number of defensive actions, each of which
has a cost and a chance of preventing an ongoing attack. An
example of a defensive action is to drop network traffic that
triggers IPS alerts of a certain priority. The defender takes
defensive actions in a pre-determined order, starting with the
action that has the lowest cost. The final action blocks all
external access to the gateway, which disrupts any ongoing
intrusion as well as the services to the clients.

When deciding the time for taking a defensive action, the
defender balances two objectives: (i) maintain services to
its clients; and (ii), prevent a possible intrusion at lowest
cost. The optimal strategy for the defender is to monitor the
infrastructure and maintain services until the moment when the
attacker enters through the gateway, at which time the attack
must be prevented at minimal cost through defensive actions.
The challenge for the defender is to identify the precise time
for this moment.

III. FORMALIZING THE INTRUSION PREVENTION
USE CASE

We model the use case as a partially observed stochastic
game. The attacker wins the game when it can intrude on
infrastructure and hide its actions from the defender. In con-
trast, the defender wins the game when it manages to prevent
an intrusion. We model this as a zero-sum game, which means
that the gain of one player equals the loss of the other player.

The attacker and the defender have different observability in
the game. The defender observes alerts from an Intrusion Pre-
vention System (IPS) but has no certainty about the presence
of an attacker or the state of a possible intrusion. The attacker,
on the other hand, is assumed to have complete observability. It
has access to all the information that the defender has access
to, as well as the defender’s past actions. The asymmetric
observability requires the defender to find strategies that are
effective against any attacker, including attackers with inside
information about its monitoring capabilities.

The reward function of the game encodes the defender’s ob-
jective. An optimal defender strategy maximizes reward when
facing a worst-case attacker. Similarly, an optimal attacker
strategy minimizes reward when facing a worst-case defender.
In game-theoretical terms, this means that a pair of optimal
strategies is a Nash equilibrium [38].

Formally, we model the game as a finite and zero-
sum Partially Observed Stochastic Game (POSG) with
one-sided partial observability: Γ = 〈N ,S, (Ai)i∈N ,
T , (Ri)i∈N , γ, ρ1, T, (Oi)i∈N ,Z〉. It is a discrete-time game
that starts at time t = 1. In the following, we describe the
components of the game, its evolution, and the objectives of
the players.
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Players N . The game has two players: player 1 is the
defender and player 2 is the attacker. Hence, N = {1, 2}.

State space S. The game has three states: st = 0 if no
intrusion is occurring, st = 1 if an intrusion is ongoing, and
st = ∅ if the game has ended. Hence, S = {0, 1, ∅}. The
initial state is s1 = 0 and the initial state distribution is the
degenerate distribution ρ1(0) = 1.

Action spaces Ai. Each player i ∈ N can invoke two
actions: “stop” (S) and “continue” (C). The action spaces are
thus A1 = A2 = {S,C}. S results in a change of state and
C means that the game remains in the same state. We encode
S with 1 and C with 0.

The attacker can invoke the stop action two times: the first
time to start the intrusion and the second time to stop it. The
defender can invoke the stop action L ≥ 1 times. Each stop of
the defender can be interpreted as a defensive action against
a possible intrusion. The number of stops remaining of the
defender at time-step t is known to both the attacker and the
defender and is denoted by lt ∈ {1, . . . , L}.

At each time-step, the attacker and the defender simul-
taneously choose an action each: at = (a

(1)
t , a

(2)
t ), where

a
(i)
t ∈ Ai.
Observation space O. The attacker has complete informa-

tion and knows the game state, the defender’s actions, and the
defender’s observations. The defender, however, only sees the
observations ot ∈ O, where O is a discrete set. (In our use
case, ot relates to the number of IPS alerts during time-step
t.)

Both players have perfect recall, meaning that they remem-
ber their respective play history. The history of the defender at
time-step t is h(1)

t = (ρ1, a(1)
1 , o1, . . ., a(1)

t−1, ot) and the history
of the attacker is h(2)

t = (ρ1, a(1)
1 , a(2)

1 , o1, s1,. . ., a(1)
t−1, a(2)

t−1,
ot, st).

Belief space B. Based on its history h(1)
t , the defender forms

a belief about st, which is expressed in the belief state bt(st) =

P[st|h(1)
t ] ∈ B. Since st ∈ {0, 1} and bt(0) = 1− bt(1), bt is

determined by bt(1). Hence, we can model B = [0, 1].
Transition probabilities T . At each time-step t, a state

transition occurs. The probabilities of the state transitions
are defined by Tlt

(
st+1, st, (a

(1)
t , a(2)

t )
)

= Plt
[
st+1| st,

(a
(1)
t , a

(2)
t )
]
:

Tlt>1

(
0, 0, (S,C)

)
= Tlt

(
0, 0, (C,C)

)
= 1 (1)

Tlt>1

(
1, 1, (·, C)

)
= Tlt

(
1, 1, (C,C)

)
= 1− φlt (2)

Tlt>1

(
1, 0, (·, S)

)
= Tlt

(
1, 0, (C, S)

)
= 1 (3)

Tlt>1

(
∅, 1, (·, C)

)
= Tlt

(
∅, 1, (C,C)

)
= φlt (4)

T1

(
∅, ·, (S, ·)

)
= Tlt(∅, ∅, ·) = Tlt(∅, 1, (·, S)) = 1 (5)

All other state transitions have probability 0.
Eqs. 1-2 define the probabilities of the recurrent state

transitions 0→ 0 and 1→ 1. The game stays in state 0 with
probability 1 if the attacker selects action C and lt−a(1)

t > 0.
Similarly, the game stays in state 1 with probability 1 − φlt
if the attacker chooses action C and lt − a(1)

t > 0. φlt is a
parameter of the use case that defines the probability that the
intrusion is prevented, which increases with each stop action
that the defender takes.
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Fig. 3: State transition diagram of a game episode: each disk
represents a state; an arrow represents a state transition; a label
indicates the conditions for the state transition; a game episode
starts in state s1 = 0 with l1 = L and ends in state sT = ∅.

Eq. 3 captures the transition 0→ 1, which occurs when the
attacker chooses action S and lt − a(1)

t > 0. Eqs. 4-5 define
the probabilities of the transitions to the terminal state ∅. The
terminal state is reached in three cases: (i) when lt = 1 and the
defender takes the final stop action S (i.e. when lt−a(1)

t = 0);
(ii) when the intrusion is prevented with probability φlt ; and
(iii), when st = 1 and the attacker stops (a(2)

t = 1).
The evolution of the game can be described with the state

transition diagram in Fig. 3. The figure describes a game
episode, which starts at t = 1 and ends at t = T . The time
horizon T is a random variable that depends on both players’
strategies and takes values in the set {t = 2, 3, . . . ,∞}.

Reward function Rlt . At time-step t, the defender receives
the reward rt = Rlt(st, (a

(1)
t , a

(2)
t )) and the attacker receives

the reward −rt. The reward function is parameterized by the
reward that the defender receives for stopping an intrusion
(Rst > 0), the defender’s cost of taking a defensive action
(Rcost < 0), and its loss when being intruded (Rint < 0):

Rlt(∅, ·) = 0, Rlt
(
1, (·, S)

)
= 0 (6)

Rlt
(
0, (C, ·)

)
= 0 (7)

Rlt
(
0, (S, ·)

)
= Rcost/lt (8)

Rlt
(
1, (S,C)

)
= Rst/lt (9)

Rlt
(
1, (C,C)

)
= Rint (10)

Eq. 6 states that the reward is zero in the terminal state and
when the attacker ends an intrusion. Eq. 7 states that the
defender incurs no cost when it is not under attack and not
taking defensive actions. Eq. 8 indicates that the defender
incurs a cost when stopping if no intrusion is ongoing, which
is decreasing with the number of stops remaining lt. Eq. 9
states that the defender receives a reward that is decreasing in
lt when taking a stop action that affects an ongoing intrusion.
Lastly, Eq. 10 indicates that the defender receives a loss for
each time-step when under intrusion.

Observation function Z . At time-step t, ot ∈ O is drawn
from a random variable O whose distribution fO depends
on the current state st. We define Z(ot, st, (a

(1)
t−1, a

(2)
t−1))=
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P[ot|st, (a(1)
t−1, a

(2)
t−1)] as follows:

Z
(
ot, 0, ·

)
= fO(ot|0) (11)

Z
(
ot, 1, ·

)
= fO(ot|1) (12)

Z
(
∅, ∅, ·

)
= 1 (13)

Belief update. At time-step t, the belief state bt is updated
as follows:

bt+1(st+1) = C
∑
st∈S

∑
a
(2)
t ∈A2

∑
ot+1∈O

bt(st)π2,l(a
(2)
t |st, bt)·

Z(ot+1, st+1, (a
(1)
t , a

(2)
t ))T

(
st+1, st, (a

(1)
t , a

(2)
t )
)

(14)

where C = 1/P[ot+1|a(1)
1 , π2,l, bt] is a normalizing factor that

makes bt+1 sum to 1. The initial belief is b1(0) = 1.
Player strategies πi,l. A strategy of the defender is a

function π1,l ∈ Π1 : B → ∆(A1). Analogously, a strategy of
the attacker is a function π2,l ∈ Π2 : S×B → ∆(A2). ∆(Ai)
denotes the set of probability distributions over Ai, Πi denotes
the strategy space of player i, and π−i,l denotes the strategy of
player j ∈ N \ {i}. For both players, a strategy is dependent
on l but independent of t, i.e. strategies are stationary. If πi,l
always maps on to an action with probability 1, it is called
pure, otherwise it is called mixed.

Objective functions Ji. The goal of the defender is to
maximize the expected discounted cumulative reward over
the time horizon T . Similarly, the goal of the attacker is to
minimize the same quantity. Therefore, the objective functions
J1 and J2 are:

J1(π1,l, π2,l) = E(π1,l,π2,l)

[
T∑
t=1

γt−1Rlt(st,at)

]
(15)

J2(π1,l, π2,l) = −J1(π1,l, π2,l) (16)

where γ ∈ [0, 1) is the discount factor.
Best response strategies π̃i,l. A defender strategy π̃1,l ∈

B1(π2,l) is called a best response against π2,l ∈ Π2 if
it maximizes J1 (Eq. 17). Similarly, an attacker strategy
π̃2,l ∈ B2(π1,l) is called a best response against π1,l ∈ Π1

if it minimizes J1 (Eq. 18).

B1(π2,l) = arg max
π1,l∈Π1

J1(π1,l, π2,l) (17)

B2(π1,l) = arg min
π2,l∈Π2

J1(π1,l, π2,l) (18)

Optimal strategies π∗i,l. An optimal defender strategy π∗1,l
is a best response strategy against any attacker strategy that
minimizes J1. Similarly, an optimal attacker strategy π∗2,l is a
best response against any defender strategy that maximizes J1.
Hence, when both players follow optimal strategies, they play
best response strategies against each other:

(π∗1,l, π
∗
2,l) ∈ B1(π∗2,l)×B2(π∗1,l) (19)

This means that no player has an incentive to change its
strategy and that (π∗1,l, π

∗
2,l) is a Nash equilibrium [38].

IV. GAME-THEORETIC ANALYSIS AND OUR APPROACH
FOR FINDING OPTIMAL DEFENDER STRATEGIES

Finding optimal strategies that satisfy Eq. 19 means finding
a Nash equilibrium for the POSG Γ. We know from game
theory that Γ has at least one mixed Nash equilibrium [39],
[38], [40], [41]. (A Nash equilibrium is called mixed if one
or more players follow mixed strategies.)

The equilibria of Γ can be obtained by finding pairs of
strategies that are best responses against each other (Eq. 19).
A best response for the defender is obtained by solving a
POMDPMP , and a best response for the attacker is obtained
by solving an MDP M. Hence, the best response strategies
can be expressed with Q-functions:

B1(π2,l) = arg max
a
(1)
t ∈A1

Q∗1,π2,l
(bt, a

(1)
t ) (20)

B2(π1,l) = arg min
a
(2)
t ∈A2

Q∗2,π1,l
((bt, st), a

(2)
t ) (21)

The corresponding Bellman equations are [42]:

Q∗i,π(xt, a
(i)
t ) = E

π,xt,a
(i)
t

[
rt+1 + γV ∗i,π(xt+1)

]
(22)

V ∗1,π(xt) = max
a
(1)
t ∈A1

E
π,xt,a

(1)
t

[
rt+1 + γV ∗1,π(xt+1)

]
(23)

V ∗2,π(xt) = min
a
(2)
t ∈A2

E
π,a

(2)
t

[
rt+1 + γV ∗2,π(xt+1)

]
(24)

V ∗(b) = max
π1,l∈∆(A1)

min
π2,l∈∆(A2)

Eπ1,l,π2,l,b

[
r

(1)
t+1 + γV ∗(bt+1)

]
(25)

Since the game is zero-sum, stationary, and γ < 1, it follows
from game theory that V ∗(b) = V ∗1,π∗

2,l
(b) = V ∗2,π∗

1,l
(b, s)

[39], [43]. Further, from Markov decision theory we know that
for any strategy pair (π1,l, π2,l), a corresponding pair of best
response strategies (π̃1,l ∈ B1(π2,l), π̃2,l ∈ B2(π1,l)) exists
[44].

A. Analyzing Best Responses using Optimal Stopping Theory

The POMDP MP and the MDP M that determine the
best response strategies can be understood as optimal stopping
problems (see Fig. 4) [15], [45], [46], [12]. In the defender’s
case, the problem is to find a stopping strategy π∗1,l(bt) →
{S,C} that maximizes J1 (Eq. 15) and prescribes the optimal
stopping times τ∗1,1, τ

∗
1,2, . . . , τ

∗
1,L. Similarly, the problem for

the attacker is to find a stopping strategy π∗2,l(st, bt)→ {S,C}
that minimizes J1 (Eq. 16) and prescribes the optimal stopping
times τ∗2,1 and τ∗2,2.

Given a pair of stopping strategies (π1,l, π2,l) and their best
responses (π̃1,l ∈ B1(π̃2,l), π̃2,l ∈ B2(π̃1,l)), we define two
subsets of B: the stopping sets and the continuation sets.

The stopping sets contain the belief states where S is a
best response: S

(1)
l,π2,l

= {b(1) ∈ [0, 1] : π̃1,l

(
b(1)

)
= S}

and S
(2)
s,l,π1,l

= {b(1) ∈ [0, 1] : π̃2,l

(
s, b(1)

)
= S}. Similarly,

the continuation sets contain the belief states where C is a
best response: C

(1)
l,π2,l

= {b(1) ∈ [0, 1] : π̃1,l

(
b(1)

)
= C} and

C
(2)
s,l,π1,l

= {b(1) ∈ [0, 1] : π̃2,l

(
s, b(1)

)
= C}.
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Fig. 4: Stopping times of the defender and the attacker in a
game episode; the lower horizontal axis represents time; the
black circles on the middle axis and the upper axis represent
time-steps of defender stop actions and attacker stop actions,
respectively; τi,j denotes the jth stopping time of player i; the
cross shows the time the intrusion is prevented; an episode
ends either when the attacker is prevented or when it takes its
second stop action.

Based on [47], [48], [49], [12], [43], we formulate Theorem
1, which contains an existence result for equilibria and a
structural result for best response strategies in the game.

Theorem 1. Given the one-sided POSG Γ in Section III with
L ≥ 1, the following holds.
(A) Γ has a mixed Nash equilibrium. Further, Γ has a pure

Nash equilibrium when s = 0 ⇐⇒ b(1) = 0.
(B) Given any attacker strategy π2,l ∈ Π2, if the probability

mass function fO|s is totally positive of order 2 (i.e., TP2
[47, Definition 10.2.1, pp. 223]), there exist values α̃1 ≥
α̃2 ≥ . . . ≥ α̃L ∈ [0, 1] and a best response strategy
π̃1,l ∈ B1(π2,l) of the defender that satisfies:

π̃1,l(b(1)) = S ⇐⇒ b(1) ≥ α̃l l ∈ 1, . . . , L (26)

(C) Given a defender strategy π1,l ∈ Π1, where π1,l(S|b(1))
is non-decreasing in b(1) and π1,l(S|1) = 1, there exist
values β̃0,1, β̃1,1, . . ., β̃0,L, β̃1,L ∈ [0, 1] and a best
response strategy π̃2,l ∈ B2(π1,l) of the attacker that
satisfies:

π̃2,l(0, b(1)) = C ⇐⇒ π1,l(S|b(1)) ≥ β̃0,l (27)

π̃2,l(1, b(1)) = S ⇐⇒ π1,l(S|b(1)) ≥ β̃1,l (28)

for l ∈ 1, . . . , L.

Proof. See Appendices A-C.

Theorem 1 tells us that Γ has a mixed Nash equilibrium.
It also tells us that, under certain assumptions, the best
response strategies have threshold properties (see Fig. 5). In
the following, we describe an efficient algorithm that takes
advantage of these properties to approximate Nash equilibria
of Γ.

B. Finding Nash Equilibria through Fictitious Self-Play

Computing Nash equilibria for a POSG is generally in-
tractable [43]. However, approximate solutions can be obtained
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0 1
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...

S
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0 1

S
(2)
1,1,π1,l

S
(2)
1,L,π1,l

β̃1,1β̃1,Lβ̃0,1
. . . β̃0,L

. . .

S
(2)
0,1,π1,l

S
(2)
0,L,π1,l

Fig. 5: Illustration of Theorem 1; the upper plot shows the
existence of L thresholds α̃1 ≥ α̃2, . . . ,≥ α̃L ∈ [0, 1]
that define a best response strategy π̃1,l,θ̃(1) ∈ B1(π2,l) (Eq.
26); the lower plot shows the existence of 2L thresholds
β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L ∈ [0, 1] that define a best response
strategy π̃2,l,θ̃(2) ∈ B2(π1,l) (Eqs. 27-28).

through iterative approximation methods. One such method
is fictitious self-play, where both players start from random
strategies and continuously update their strategies based on
the outcomes of played game episodes [50].

Fictitious self-play evolves through a sequence of iteration
steps, which is illustrated in Fig. 6. An iteration step includes
three procedures. First, player 1 learns a best response strategy
against player 2’s current strategy. The roles are then reversed
and player 2 learns a best response strategy against player 1’s
current strategy. Lastly, the iteration step is completed by hav-
ing each player adopt a new strategy, which is determined by
the empirical distribution over its past best response strategies.
The sequence of iteration steps continues until the strategies of
both players have sufficiently converged to a Nash equilibrium
[50], [51].

C. Our Self-Play Algorithm: T-FP

We present a fictitious self-play algorithm, which we call
T-FP, that exploits the statements in Theorem 1 to efficiently
approximate Nash equilibria of Γ.

T-FP implements the fictitious self-play process described
in Section IV-B and generates a sequence of strategy profiles
(π1,l, π2,l), (π′1,l, π

′
2,l), . . ., (π∗1,l, π

∗
2,l) that converges to a

Nash equilibrium. During each step of this process, T-FP
learns best responses against the players’ current strategies and
then updates the strategies of both players to be the empirical
distribution over the past strategies (see Fig. 6).

T-FP parameterizes the best response strategies π̃1,l,θ̃(1) ∈
B1(π2,l) and π̃2,l,θ̃(2) ∈ B2(π1,l) by threshold vectors. The
defender’s best response strategy is parameterized with the
vector θ̃(1) ∈ RL (Eq. 30). Similarly, the attacker’s best
response strategy is parameterized with the vector θ̃(2) ∈ R2L

(Eq. 31).

ϕ(a, b) =

(
1 +

(
b(1− σ(a))

σ(a)(1− b)

)−20
)−1

(29)
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π̃2,l ∈ B2(π1,l)

π2,l

π1,l

π̃1,l ∈ B1(π2,l)

π̃′2,l ∈ B2(π′1,l)

π′2,l

π′1,l

π̃′1,l ∈ B1(π′2,l)

. . .

π∗2,l ∈ B2(π∗1,l)

π∗1,l ∈ B1(π∗2,l)

Fig. 6: The fictitious self-play process; in every iteration each
player learns a best response strategy π̃i,l ∈ Bi(π−i,l) and
updates its strategy based on the empirical distribution of
its past best responses; the horizontal arrows indicate the
iterations of self-play and the vertical arrows indicate the
learning of best responses; if the process is convergent, it
reaches a Nash equilibrium (π∗1,l, π

∗
2,l).

π̃1,l,θ̃(1)

(
S|b(1)

)
= ϕ

(
θ̃

(1)
l , b(1)

)
(30)

π̃2,l,θ̃(2)

(
S|b(1), s

)
= ϕ

(
θ̃

(2)
sL+l, π1,l(S|b(1))

)
(31)

σ(·) is the sigmoid function, σ(θ̃
(1)
1 ), σ(θ̃

(1)
2 ), . . ., σ(θ̃

(1)
L ) ∈

[0, 1] are the L thresholds of the defender (see Theorem 1.B),
and σ(θ̃

(2)
1 ), σ(θ̃

(2)
2 ), . . ., σ(θ̃

(2)
2L ) ∈ [0, 1] are the 2L thresholds

of the attacker (see Theorem 1.C).
Using this parameterization, T-FP learns best response

strategies by iteratively updating θ̃(1) and θ̃(2) through stochas-
tic approximation. To update the threshold vectors, T-FP
simulates Γ, which allows to evaluate the objective functions
J1(π̃1,l,θ̃(1) , π2,l) (Eq. 15) and J2(π1,l, π̃2,l,θ̃(2)) (Eq. 16). The
obtained values of J1 and J2 are then used to estimate the
gradients ∇θ̃(1)J1 and ∇θ̃(2)J2 using the Simultaneous Per-
turbation Stochastic Approximation (SPSA) gradient estimator
[52], [53]. Next, the estimated gradients are used to update θ̃(1)

and θ̃(2) through stochastic gradient ascent. This procedure of
estimating gradients and updating θ̃(1) and θ̃(2) continues until
π̃1,l,θ̃(1) and π̃2,l,θ̃(2) have sufficiently converged.

After the best response strategies π̃1,l,θ̃(1) and π̃2,l,θ̃(2)

have converged, the threshold vectors are added to buffers
Θ(1) and Θ(2), which contain the vectors learned in previous
iterations of T-FP. The iteration step is completed by having
both players update their strategies based on the empirical
distributions over the past vectors in the buffer.

The pseudocode of T-FP is listed in Algorithm 1. (Here
Uk({−1, 1}) denotes a k-dimensional discrete multivariate
uniform distribution on {−1, 1}.)

V. EMULATING THE TARGET INFRASTRUCTURE TO
INSTANTIATE THE SIMULATION

To simulate a game episode we must know the observation
distribution conditioned on the system state (see Eqs. 11-13).
We estimate this distribution using measurements from the

Algorithm 1 T-FP
Input
Γ, N : the POSG and # best response iterations
a, c, λ,A, ε, δ: scalar coefficients
Output
(π∗1,l, π

∗
2,l): an approximate Nash equilibrium

1: procedure T-FP
2: θ̃(1) ∼ UL({−1, 1}), θ̃(2) ∼ U2L({−1, 1})
3: Θ(1) ← {θ̃(1)}, Θ(2) ← {θ̃(2)}, δ̂ ←∞
4: π1,l ← EMPIRICALDISTRIBUTION(Θ(1))
5: π2,l ← EMPIRICALDISTRIBUTION(Θ(2))
6: while δ̂ ≥ δ do
7: for i ∈ {1, 2} do
8: θ̃

(i)
(1) ∼ UiL({−1, 1})

9: for n ∈ {1, . . . , N} do
10: an ← a

(n+A)ε , cn ← c
nλ

11: for k ∈ {1, . . . , iL do
12: (∆n)k ∼ U1({−1, 1})
13: end for
14: Rhigh ∼ Ji(πi,l,θ̃(i)

(n)

+ cn∆n, π−i,l)

15: Rlow ∼ Ji(πi,l,θ̃(i)
(n)

− cn∆n, π−i,l)

16: for k ∈ {1, . . . , iL} do
17: G← Rhigh−Rlow

2cn(∆n)k

18:

(
∇̂
θ̃
(i)

(n)

Ji(πi,l,θ̃(i)
(n)

, π−i,l)

)
k

← G

19: end for
20: θ̃

(i)
(n+1) = θ̃

(i)
(n) + an∇̂θ̃(i)

(n)

Ji(πi,l,θ̃(i)
(n)

, π−i,l)

21: end for
22: Θ(i) ← Θ(i) ∪ θ̃(i)

(N+1)
23: end for
24: π1,l ← EMPIRICALDISTRIBUTION(Θ(1))
25: π2,l ← EMPIRICALDISTRIBUTION(Θ(2))
26: δ̂ = EXPLOITABILITY(π1,l, π2,l)
27: end while
28: return (π1,l, π2,l)
29: end procedure

emulation system shown in Fig. 2. Moreover, to evaluate the
performance of strategies learned in the simulation system,
we run game episodes in the emulation system by having the
attacker and the defender take actions at the times prescribed
by the learned stopping strategies.

A. Emulating the Target Infrastructure

The emulation system executes on a cluster of machines
that runs a virtualization layer provided by Docker [54]
containers and virtual links. The system implements network
isolation and traffic shaping on the containers using network
namespaces and the NetEm module in the Linux kernel [55].
Resource constraints on the containers, e.g. CPU and memory
constraints, are enforced using cgroups.

The network topology of the emulated infrastructure is
given in Fig. 1 and the configuration is given in Appendix
E. The system emulates the clients, the attacker, the defender,
network connectivity, and 31 physical components of the
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Functions Application servers

HTTP, SSH, SNMP, ICMP N2, N3, N10, N12

IRC, PostgreSQL, SNMP N31, N13, N14, N15, N16

FTP, DNS, Telnet N10, N22, N4

TABLE 1: Emulated client population; each client interacts
with application servers using a set of network functions.

target infrastructure (e.g application servers and the gateway).
The software functions replicate important components of the
target infrastructure, such as, web servers, databases, and the
Snort IPS, which is deployed using Snort’s community ruleset
v2.9.17.1.

We emulate connections between servers as full-duplex loss
less connections with capacity 1 Gbit/s in both directions.
We emulate external connections between the gateway and
the client population as full-duplex connections of 100 Mbit/s
capacity and 0.1% packet loss with random bursts of 1%
packet loss. (These numbers are drawn from empirical studies
on enterprise and wide area networks [56], [57], [58].)

B. Emulating the Client Population

The client population is emulated by processes that run
inside Docker containers and interact with the application
servers through the gateway. The clients select functions
uniformly at random from the list given in Table 1. We
emulate client arrivals using a stationary Poisson process with
parameter λ = 20 and exponentially distributed service times
with parameter µ = 1

4 . The duration of a time-step in the
emulation is 30 seconds.

C. Emulating Defender and Attacker Actions

The attacker and the defender observe the infrastructure
continuously and take actions at discrete time-steps t =
1, 2, . . . , T . During each step, the defender and the attacker
can perform one action each.

The defender executes either a continue action or a stop
action. Only the stop action affects the progression of the
emulation. We have implemented L = 7 stop actions, which
are listed in Table 2. The first stop action revokes user certifi-
cates and recovers user accounts thought to be compromised
by the attacker. The second stop action updates the firewall
configuration of the gateway to drop traffic from IP addresses
that have been flagged by the IPS. Stop actions 3− 6 update
the configuration of the IPS to drop traffic that generates alerts
of priorities 1 − 4. The final stop action blocks all incoming
traffic. (Contrary to Snort’s terminology, we define 4 to be the
highest priority.)

Like the defender, the attacker executes either a stop action
or a continue action during each time-step. The attacker can
take two stop actions. The first determines when the intrusion
starts and the second determines when it ends (see Section
III). A continue action in state s = 0 has no affect on the
emulation, but a continue action in state s = 1 has. When the
attacker takes a stop action in state s = 0 or a continue action
in state s = 1, an intrusion command is executed. We have

Stop index Action

1 Revoke user certificates
2 Blacklist IPs
3 Drop traffic that generates IPS alerts of priority 1
4 Drop traffic that generates IPS alerts of priority 2
5 Drop traffic that generates IPS alerts of priority 3
6 Drop traffic that generates IPS alerts of priority 4
7 Block gateway

TABLE 2: Defender stop actions in the emulation.

Type Actions

Reconnaissance TCP-SYN scan, UDP port scan,
TCP Null scan, TCP Xmas scan, TCP FIN scan,
ping-scan, TCP connection scan,
“Vulscan” vulnerability scanner

Brute-force attack Telnet, SSH, FTP, Cassandra,
IRC, MongoDB, MySQL, SMTP, Postgres

Exploit CVE-2017-7494, CVE-2015-3306,
CVE-2010-0426, CVE-2015-5602,
CVE-2014-6271, CVE-2016-10033
CVE-2015-1427, SQL Injection

TABLE 3: Attacker commands to emulate intrusions.

implemented 25 such commands, which are listed in Table
3. During each step of an intrusion, the attacker selects a
command uniformly at random from the list in Table 3.

D. Estimating the IPS Alert Distribution

At the end of every time-step, the emulation system collects
the metric ot, which contains the number of IPS alerts that
occurred during the time-step, weighted by priority. For the
evaluation reported in this paper we collect measurements
from 23000 time-steps of 30 seconds each.

Using these measurements, we fit a Gaussian mixture distri-
bution f̂O as an estimate of fO in the target infrastructure (Eqs.
11-12). For each state s, we obtain the conditional distribution
f̂O|s through expectation-maximization [59].

f̂
O

(o
t
|0

)

Probability distribution of # IPS alerts weighted by priority ot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

f̂
O

(o
t
|1

)

Fitted model Distribution st = 0 Distribution st = 1

Fig. 7: Empirical distributions of ot when no intrusion occurs
(st = 0) and during intrusion (st = 1); the black lines show
the fitted Gaussian mixture models.
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Fig. 8: Emulation of a game episode; measurement data (ot)
is aggregated in a log that is consumed by a stream processor
to compute the next belief bt based on the history ht; the next
pair of actions at is sampled from the strategy pair (π1,l, π2,l)
and is executed in the infrastructure using a gRPC/SSH API.

Fig. 7 shows the empirical distributions and the fitted model
over the discrete observation space O = {1, 2, . . . , 9000}.
f̂O|0 and f̂O|1 are Gaussian mixtures with two and three
components, respectively. Both mixtures have most probability
mass within the range 0 − 1000. f̂O|1 also has substantial
probability mass at larger values.

The stochastic matrix with the rows f̂O|0 and f̂O|1 has about
72× 106 minors, out of which virtually all are non-negative.
This suggests to us that the TP2 assumption in Theorem 1 can
be made.

E. Running Game Episodes

During a simulation, the game state evolves according to
the dynamics described in Section III and the defender’s belief
state evolves according to Eq. 14. The actions of both players
are determined by their strategies, and the observations are
sampled from the estimated observation distribution f̂O.

An episode in the emulation system differs from an episode
in the simulation system. First, the emulated client population
issues requests to the emulated application servers (see Section
V-B). Second, the defender’s observations are not sampled
but are obtained through reading log files and metrics of the
emulated infrastructure, which depend on the network traffic
generated by the client population, the attacker, as well as
internal infrastructure processes. Third, attacker and defender
actions in the emulation system include executing networking
and computing functions (see Table 2 and Table 3).

We collect the observations in the emulation system using
a distributed log implemented with Kafka [60] (see Fig.
8). Log updates are read periodically by a program that
computes the defender’s belief state b(1) and the game state
s. Using this information, the attacker’s and the defender’s
strategies determine the next actions, which are executed in
the emulation system using an API implemented over gRPC
[61] and SSH.

VI. LEARNING NASH EQUILIBRIUM STRATEGIES FOR THE
TARGET INFRASTRUCTURE

Our approach to finding effective defender strategies in-
cludes: (1) extensive simulation of game episodes in the

simulation system to learn Nash equilibrium strategies; and (2)
evaluation of the learned strategies on the emulation system
(see Fig. 2). This section describes our evaluation results for
the intrusion prevention use case.

The environment for running simulations and training strate-
gies is a Tesla P100 GPU. The hyperparameters for the
training algorithm are listed in Appendix D. The emulated
infrastructure is deployed on a server with a 24-core Intel Xeon
Gold 2.10 GHz CPU and 768 GB RAM.

The code for the simulation system and the measurement
traces for the intrusion prevention use case are available at
[62]. They can be used to validate our results and extend this
research.

A. Learning Equilibrium Strategies through Self-Play

We run T-FP for 500 iterations to estimate a Nash equilib-
rium using the iterative method described in Section IV-B. At
the end of each iteration step, we evaluate the current strategy
pair (π1,l, π2,l) by running 500 evaluation episodes in the
simulation system and 5 evaluation episodes in the emulation
system. This allows us to produce learning curves for different
performance metrics (see Fig. 9).

To estimate the convergence of the sequence of strategy
pairs to a Nash equilibrium, we use the approximate ex-
ploitability metric vexp [63]:

vexp = J1(π̂1,l, π2,l) + J2(π1,l, π̂2,l) (32)

where π̂i,l denotes an approximate best response strategy
for player i obtained through dynamic programming. The
closer vexp becomes to 0, the closer (π1,l, π2,l) is to a Nash
equilibrium.

The 500 training iterations constitute one training run. We
run four training runs with different random seeds. A single
training run takes about 5 hours of processing time on a P100
GPU. In addition, it takes around 12 hours to evaluate the
strategies on the emulation system.

Defender baseline strategies. We compare the learned
defender strategies with three baselines. The first baseline
prescribes the stop action whenever an IPS alert occurs, i.e.,
whenever ot ≥ 1. The second baseline follows the Snort
IPS’s internal recommendation system and takes a stop action
whenever 100 IP packets have been dropped by the Snort
IPS (see Appendix E for the Snort configuration). The third
baseline assumes knowledge of the exact intrusion time and
performs all stop actions at subsequent time-steps.

Baseline algorithms. We compare the performance of T-
FP with two baseline algorithms: Neural Fictitious Self-Play
(NFSP) [64] and Heuristic Search Value Iteration (HSVI)
for one-sided POSGs [65]. NFSP is a state-of-the-art deep
reinforcement learning algorithm for imperfect-information
games. Similar to T-FP, NFSP is a fictitious self-play al-
gorithm. However, contrary to T-FP, NFSP does not exploit
the threshold structures expressed in Theorem 1 and as a
result is more complex. HSVI is a state-of-the-art dynamic
programming algorithm for one-sided POSGs.
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Fig. 9: Learning curves from the self-play process with T-FP; the red curve show simulation results and the blue curves show
emulation results; the purple, orange, and black curves relate to baseline strategies; the figures show different performance
metrics: exploitability, episodic reward, and the length of intrusion; the curves indicate the mean and the 95% confidence
interval over four training runs with different random seeds.

0.5
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0.0

0.5
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π2,l(S|0, π1(S|b(1)))
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π2,l(S|1, π1(S|b(1)))

0.5
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Fig. 10: Probability of the stop action S by the learned
equilibrium strategies in function of b(1) and l; the left and
middle plots show the attacker’s stopping probability when
s = 0 and s = 1, respectively; the right plot shows the
defender’s stopping probability.

B. Discussion of the Evaluation Results

Fig. 9 shows the learning curves of the strategies obtained
during the T-FP self-play process. The red curve represents the
results from the simulation system and the blue curves show
the results from the emulation system. The purple and orange
curves give the performance of the Snort IPS baseline and the
baseline strategy that mandates a stop action whenever an IPS
alert occurs, respectively. The dashed black curve gives the
performance of the baseline strategy that assumes knowledge
of the exact intrusion time.

The results in Fig. 9 lead us to the following conclusions.
First, the fact that all learning curves seem to converge
suggests to us that the learned strategies have converged
as well. Second, we observe that the exploitability of the
learned strategies converges to small values (left plot of Fig.
9). This indicates that the learned strategies approximate a
Nash equilibrium both in the simulation system and in the
emulation system. Third, we see from the middle plot in Fig.
9 that both baseline strategies show decreasing performance
as the attacker updates its strategy. In contrast, the learned
defender strategy improves its performance over time. This
shows the benefit of using a game-theoretic approach, whereby
the defender’s strategy is optimized against a dynamic attacker.

Fig. 10 illustrates some of the structural properties of the
learned strategies. The y-axis shows the probability of the stop
action S and the x-axis shows the defender’s belief b(1) ∈ B.
We observe that the strategies are stochastic. Hence, since

0 10 20 30 40 50 60
running time (min)

0

2

4

Exploitability

0 10 20 30 40 50 60
running time (min)

0

250

500

750

Approximation error (gap)

55.0 57.5 60.0

7.5

10.0

T-FP NFSP HSVI

Fig. 11: Comparison between T-FP and two baseline algo-
rithms: NFSP and HSVI; all curves show simulation results;
the red curve relate to T-FP; the blue curve to NFSP; the
purple curve to HSVI; the left plot shows the approximate
exploitability metric and the right plot shows the HSVI ap-
proximation error [65]; the curves depicting T-FP and NFSP
show the mean and the 95% confidence interval over four
training runs with different random seeds.

Fig. 9 suggests that the learned strategies converge to a Nash
equilibrium, Fig. 10 suggests that this equilibrium is mixed,
which we expect based on Theorem 1.A. As we further expect
from Theorem 1.B-C, we see that that the defender’s stopping
probability is increasing with b(1) and decreasing with l (right
plot of Fig. 10). Similarly, we observe that the attacker’s
stopping probability is decreasing with the defender’s stopping
probability when s = 0 and is increasing when s = 1 (left and
middle plot of Fig. 10).

Fig. 11 allows a comparison between T-FP and the two
baseline algorithms (NFSP and HSVI) as they execute in the
simulation system. Since T-FP and NFSP both implement
fictitious self-play, they allow for a direct comparison. We
observe that T-FP converges much faster to a Nash equilibrium
than NFSP. We expect the fast convergence of T-FP due to its
design to exploit structural properties of the stopping game.

The right plot of Fig. 11 shows that HSVI reaches an HSVI
approximation error < 5 within an hour. We expected slower
convergence due to findings in [66], [43]. A direct comparison
between T-FP and HSVI is not possible due to the different
nature of the two algorithms.

Lastly, Fig. 12 shows the computed value function of the
game V̂ ∗ (Eq. 25). We see that V̂ ∗ is piece-wise linear and
convex, as expected by the theory of one-sided POSGs [66].
We also observe that the value of V̂ ∗ is minimal when b(1) ≈
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Fig. 12: The value function V̂ ∗l(b(1)) computed through the
HSVI algorithm with approximation error 4; the blue and red
curves relate to l = 7 and l = 1, respectively.

0.25 and is 0 when b(1) = 1. Moreover, we note that this
value is slightly lower for l = 1 compared to l = 7.

VII. RELATED WORK

Traditional approaches to intrusion prevention use packet
inspection and static rules for detection of intrusions and selec-
tion of response actions [67], [68], [1]. Their main drawback
lies in the need for domain experts to configure the rule sets.
As a consequence, much effort has been devoted to developing
methods for finding security strategies in an automatic way.
This research uses concepts and methods from various areas,
most notably from anomaly detection (see example [69]),
change-point detection (see example [70]), statistical learning
(see examples [71], [72], [73]), control theory (see survey [5]),
game theory (see textbooks [10], [74], [75], [76]), artificial
intelligence (see survey [77] and textbook [78]), dynamic
programming (see example [4]), reinforcement learning (see
surveys [79], [80] and textbook [81]), evolutionary methods
(see examples [6], [7]), and attack graphs (see example [82]).
While the research reported in this paper is informed by all the
above works, we limit the following discussion to prior work
that uses game-theoretic models and centers around finding
strategies through reinforcement learning.

A. Reinforcement Learning in Network Security

Many recent results of automating security strategies have
been obtained using reinforcement learning methods. In par-
ticular, a large number of studies have focused on intrusion
prevention use cases similar to the one we discuss in this paper
[13], [14], [26], [27], [19], [25], [28], [20], [29], [21], [22],
[24], [83], [84], [85], [23], [86], [33], [35], [34].

These works use a variety of models, including MDPs [19],
[20], [21], [22], [23], [35], Markov games [26], [13], [83],
[33], attack graphs [34], and POMDPs [14], [24], [25], as
well as various reinforcement learning algorithms, including
Q-learning [26], [19], [20], [36], SARSA [25], PPO [13], [14],
[34], [35], hierarchical reinforcement learning [21], DQN [22],
Thompson sampling [24], MuZero [83], NFQ [84], DDQN
[23], NFSP [37], and DDPG [85], [33].

This paper differs from the works referenced above in three
main ways. First, we model the intrusion prevention use case
as a partially observed stochastic game. Most of the other
works model the use case as a single-agent MDP or POMDP.
The advantage of using a game-theoretic model is that it allows

finding defender strategies that are effective against dynamic
attackers.

Second, in a novel approach, we derive structural properties
of strategies in the game using optimal stopping theory.

Third, our method to find effective defender strategies
includes using an emulation system in addition to a simu-
lation system. The advantage of our method compared to the
simulation-only approaches [13], [14], [26], [27], [19], [25],
[28], [20], [29], [21], [22], [24], [33], [34], [35], [36], [37] is
that the parameters of our simulation system are determined
by measurements from an emulation system instead of being
chosen by a human expert. Further, the learned strategies
are evaluated in the emulation system, not in the simulation
system. As a consequence, the evaluation results give higher
confidence of the obtained strategies’ performance in the target
infrastructure than what simulation results would provide.

Some prior work on automated intrusion prevention that
make use of emulation are: [83], [84], [85], [87], and [23].
They emulate software-defined networks based on Mininet
[88]. The main differences between these efforts and the work
described in this paper are: (1) we develop our own emulation
system which allows for experiments with a large variety of
exploits; (2) we focus on a different intrusion prevention use
case; (3) we do not assume that the defender has perfect
observability; (4) we do not assume a static attacker; and (5),
we use an underlying theoretical framework to formalize the
use case, derive structural properties of optimal strategies, and
test these properties in an emulation system.

Finally, [89], [90], and [91] describe ongoing efforts in
building emulation platforms for reinforcement learning and
cyber defense, which resemble our emulation system. In
contrast to these papers, our emulation system has been built
to investigate the specific use case of intrusion prevention and
forms an integral part of our general solution method (see Fig.
2).

B. Game Theoretic Modeling in Network Security
Several examples of game theoretic security models can be

found in the literature, e.g. advanced persistent threat games
[30], [31], [32], honeypot placement games [92], [93], [94],
resource allocation games [95], authentication games [11],
distributed denial-of-service games [87], [96], and intrusion
prevention games [97], [13], [83], [98], [99], [100].

This paper differs from the works referenced above in two
main ways. First, we model the intrusion prevention use case
as an optimal stopping game. The benefit of our model is that
it provides insight into the structure of best response strategies
through the theory of optimal stopping.

Game-theoretic formulations based on optimal stopping
theory can be found in prior research on Dynkin games [16],
[101], [102], [103], [104]. Compared to these papers, our
approach is more general by (1) allowing each player to
take multiple stop actions within an episode; and (2), by not
assuming a game of perfect information. Another difference
is that the referenced papers either study purely mathematical
problems or problems in mathematical finance. To the best of
our knowledge, we are the first to apply the stopping game
formulation to the use case of intrusion prevention.
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Our stopping game has similarities with the FlipIt game [30]
and signaling games [105], both of which are commonplace
in the security literature (see survey [106] and textbooks [10],
[74], [75], [76]). Signaling games have the same information
asymmetry as our game and FlipIt uses the same binary
state space to model the state of an intrusion. The main
differences are as follows. FlipIt models the use case of
advanced persistent threats and is a symmetric non-zero-sum
game. In contrast, our game models an intrusion prevention
use case and is an asymmetric zero-sum game. Compared to
signaling games, the main differences are that our game is a
sequential and simultaneous-move game. Signaling games are
typically two-stage games where one player moves in each
stage.

Second, as we noted above, we evaluate obtained strategies
on an emulated IT infrastructure. This contrasts with most
of the prior works that use game-theoretic approaches, which
only evaluate strategies analytically or in simulation [30], [31],
[32], [92], [93], [94], [11], [96], [97], [13], [98], [99], [100].

VIII. CONCLUSION AND FUTURE WORK

We formulate the interaction between an attacker and a
defender in an intrusion prevention use case as an optimal
stopping game. The theory of optimal stopping provides us
with insight about optimal strategies for attackers and defend-
ers. Based on this knowledge, we develop a fictitious self-play
algorithm, T-FP, which allows us to compute near optimal
strategies in an efficient way. This approach provides us with
a complete formal framework for analyzing and solving the
intrusion prevention use case. The simulation results from
executions of T-FP show that the exploitability of the com-
puted strategies converges, which suggests that the strategies
converge to a Nash equilibrium and thus to an optimum in
the game-theoretic sense. The results also demonstrate that
T-FP converges faster than a state-of-the-art fictitious self-
play algorithm by taking advantage of structural properties of
optimal stopping strategies.

To assess the computed strategies in a real environment,
we evaluate them in a system that emulates our target infras-
tructure. The results show that the strategies achieve almost
the same performance in the emulated infrastructure as in the
simulation. This gives us a high confidence of the obtained
strategies’ performance in the target infrastructure.

We plan to extend this work in several directions. First of
all, the model of the attacker and the defender in this paper is
simplistic as it only models the timing of actions and not their
selection. We plan to combine our current model for deciding
when to take defensive actions with a model for the selection
of which action to take.
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APPENDIX A
PROOF OF THEOREM 1.A

Proof of Theorem 1.A. Since the POSG Γ introduced in Sec-
tion III is finite and γ ∈ (0, 1), the existence proofs in [41]
and [66] applies, which state that a mixed Nash equilibrium
exists.

We prove that a pure Nash equilibrium exists when s =
0 ⇐⇒ b(1) = 0 using a proof by construction. It follows
from Eqs. 6-10 and Eq. 17 that the pure strategy defined by
π̄1,l(0) = C and π̄1,l(b(1)) = S ⇐⇒ b(1) > 0 is a
best response for the defender against any attacker strategy
when s = 0 ⇐⇒ b(1) = 0. Similarly, given π̄1,l, we get
from Eqs. 6-10 and Eq. 18 that the pure strategy defined by
π̄2,l(0, b(1)) = C and π̄2,l(1, b(1)) = S for all b(1) ∈ [0, 1] is
a best response for the attacker. Hence, (π̄1,l, π̄2,l) is a pure
Nash equilibrium (see Eq. 19).

APPENDIX B
PROOF OF THEOREM 1.B.

Given the POSG Γ introduced in Section III and a fixed
attacker strategy π2,l, the best response strategy of the defender
π̃1,l ∈ B1(π2,l) is an optimal strategy in a POMDP MP

(see Section IV). Hence, it is sufficient to show that there
exists an optimal strategy π∗1,l in MP that satisfies Eq. 26.
The conditions for Eq. 26 to hold and the proof are given
in our previous work [12][Theorem 1.C]. Since fO|s is TP2
by assumption and all of the remaining conditions hold by
definition of Γ, the result follows.

APPENDIX C
PROOF OF THEOREM 1.C.

Given the POSG Γ introduced in Section III and a fixed
defender strategy π1,l, the best response strategy of the attacker
π̃2,l ∈ B2(π1,l) is an optimal strategy in an MDP M (see
Section IV). Hence, it is sufficient to show that there exists an
optimal strategy π∗2,l in M that satisfies Eqs. 27-27. To prove
this, we use properties of M’s value function V ∗π1,l,l

.
We use the value iteration algorithm to establish properties

of V ∗π1,l,l
[44], [47]. Let V kπ1,l,l

, S
k,(2)
s,l,π1,l

, and C
k,(2)
s,l,π1,l

, denote
the value function, the stopping set, and the continuation
set at iteration k of the value iteration algorithm, respec-
tively. Then, limk→∞ V kπ1,l,l

= V ∗π1,l,l
, limk→∞S

k,(2)
s,l,π1,l

=

S
(2)
s,l,π1,l

, and limk→∞ C
k,(2)
s,l,π1,l

= C
(2)
s,l,π1,l

[44], [47]. We
define V 0

π1,l,l

(
(s, b(1))

)
= 0 for all b(1) ∈ [0, 1], s ∈ S and

l ∈ {1, . . . , L}.
Towards the proof of Theorem 1.C, we state the following

six lemmas.

Lemma 1. Given any defender strategy π1,l, V ∗π1,l,2

(
s, b(1)

)
≥ 0 for all s ∈ S and b(1) ∈ [0, 1].

Proof. Consider π̄2,l defined by π̄2,l(0, ·) = C and π̄2,l(1, ·) =
S. Then it follows from Eqs. 6-10 that for any π1,l ∈ Π1,
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s ∈ S and b(1) ∈ [0, 1], the following holds: V π̄2,l

π1,l,l
(s, b(1)) ≥

0. By optimality, V π̄2,l

π1,l,l
(s, b(1)) ≤ V ∗π1,l,l

(s, b(1)). Hence,
V ∗π1,l,l

(s, b(1)) ≥ 0.

Lemma 2. V ∗π1,l,l

(
1, b(1)

)
is non-increasing with π1,l(S|b(1))

and non-decreasing with l ∈ {1, . . . , L}.

Proof. We prove this statement by mathematical induction.
For k = 0, we know from Eqs. 6-10 that V 0

π1,l,l

(
1, b(1)

)
is

non-increasing with π1,l(S|b(1)) and non-decreasing with l.
For k > 0, V kπ1,l,l

is given by:

V kπ1,l,l

(
1, b(1)

)
= max

[
0,−R

(
1, (C, a(1))

)
(33)

+ (1− φl)
∑
o

fO(o|1)V k−1
l−aa(1)

(
1, b(1)

)]
The first term in the maximization in Eq. 33 is trivially
non-increasing with π1,l(S|b(1)) and non-decreasing with l.
Assume by induction that the conditions hold for V k−1

π1,l,l

(
s,

b(1)
)
. Then the second term in Eq. 33 is non-increasing with

π1,l(S|b(1)) and non-decreasing with l by Eqs. 6-10 and the
induction hypothesis. Hence, V kπ1,l,l

(
s, b(1)

)
is non-increasing

with π1,l(S|b(1)) and non-decreasing with l for all k ≥ 0.

Lemma 3. If fO is TP2 and π1,l(S|b(1)) is increasing
with b(1), then Vπ1,l,l(b(1), 1) ≥

∑
o fO(o|1)Vπ1,l,l(1, b

o(1)),
where bo(1) denotes b(1) updated with Eq. 14 after observing
o ∈ O.

Proof. Since fO is TP2, it follows from [47, Theorem 10.3.1,
pp. 225,238] and [12, Lemma 4, pp. 12] that given two beliefs
b′(1) ≥ b(1) and two observations o ≥ ō, the following holds
for any k ∈ O and lt ∈ {1, . . . , L}: b′,o(1) ≥ bo(1), P[o ≥
k|b′(1)] ≥ P[o ≥ k|b(1)], and boa(1) ≥ bōa(1).

Since π1,l is increasing with b(1) and Vπ1,l,l(b(1), 1) is
decreasing with b(1) (Lemma 2), it follows that Eo[bo(1)] ≥
b(1), and thus Vπ1,l,l(b(1), 1) ≥

∑
o fO(o|1)Vπ1,l,l(1, b

o(1)).

Lemma 4. If fO is TP2, π1,l(S|b(1)) = 1, and π1,l(S|b(1))
is increasing with b(1), then V ∗π1,l,2

(
s,b(1)

)
= 0 and for any

π̃2,l ∈ B2(π1,l), π̃2,l(1,b(1))= 1.

Proof. From Eqs. 22-25 we know that π̃2,l(1, b(1)) = 1 iff:

Rst/l + (φl − 1)
∑
o

fO(o|1)V ∗π1,l,l−a(1)(1, b
o(1)) ≥ 0 (34)

We know that Rst ≥ 0 (see Section III). Further, since fO
is TP2, π1,l(S|b(1)) = 1, and π1,l(S|b(1)) is increasing with
b(1), we have by Lemma 3 that Eo[π1,l(S|bo(1)) = 1]. The
second term in the left-hand side of Eq. 34 is thus zero. Hence,
the inequality holds and π̃2,l(1, b(1)) = 1, which implies that
V ∗π1,l,2

(
s, b(1)

)
= 0.

Lemma 5. Given any defender strategy π1,l ∈ Π1, if
π∗2,l(1, b(1)) = S, then π∗2,l(0, b(1)) = C.

Proof. π∗2,l(1,b(1))= S implies that V ∗π1,l,l
(1,b(1))= 0. Hence,

by Lemma 3 we get that:

(1− φl)
∑
o∈O

fO(o|1)V ∗π1,l,l
(1, bo) ≤ 0 (35)

=⇒
∑
o∈O

fO(o|1)V ∗π1,l,l
(1, bo) ≤

∑
o∈O

fO(o|0)V ∗π1,l,l
(0, bo)

=⇒ π∗2,l(0, b(1)) = C

Lemma 6. If π1,l(S|b(1)) is non-decreasing with b(1) and
fO is TP2, then V ∗π1,l,l

(
0, b(1)

)
− V ∗π1,l,l

(
1, b(1)

)
is non-

decreasing with π1,l(S|b(1)).

Proof. We prove this statement by mathematical induction.
Let W k

π1,l,l
(b(1)) = V kπ1,l,l

(
0, b(1)

)
− V kπ1,l,l

(
1, b(1)

)
. For

k = 0, it follows from Eqs. 6-10 that W 0
π1,l,l

(b(1)) is non-
decreasing with π1,l(S|b(1)) ∈ [0, 1]. Assume by induction
that the conditions hold for W k−1

π1,l,l
(b(1)). We show that then

the conditions hold also for W k
π1,l,l

(b(1)).
There are three cases to consider:
• If b(1) ∈ S

k,(2)
0,l,π1,l

∩ C
k,(2)
1,l,π1,l

, then:

W k
π1,l,l

(b(1)) = Rint+ (36)

π1,l(S|b(1))(Rst/l −Rcost/l −Rint)

which is non-decreasing with π1,l(S|b(1)) since Rst/l−
Rcost/l −Rint ≥ 0 (see Section III).

• If b(1) ∈ C
k,(2)
0,l,π1,l

∩ C
k,(2)
1,l,π1,l

, then:

W k
π1,l,l

(b(1)) = π1,l(S|b(1))
(
Rst/l −Rcost/l (37)

−Rint
)

+ V k−1
π1,l,l

(
1, b(1)

))
+Rint +

∑
o

fO(o|0)

V kπ1,l,l

(
0, bo(1)

)
− (1− φl)fO(o|1)V kπ1,l,l

(
1, bo(1)

)
The first term is non-decreasing with π1,l(S|b(1)) since
Rst/l − Rcost/l − Rint ≥ 0 (see Section III) and
V k−1
π1,l,l

(
1, b(1)

)
≥ 0 (it is a consequence of Lemma

1 and Eqs. 22-25). The second term is non-decreasing
with π1,l(S|b(1)) by the induction hypothesis and the
assumption that fO is TP2.

• If b(1) ∈ C
k,(2)
0,l,π1,l

∩S
k,(2)
1,l,π1,l

, then:

W k
π1,l,l

(b(1)) = π1,l(S|b(1))(−Rcost/l) (38)

+
∑
o

fO(o|0)V kπ1,l,l

(
0, bo(1)

)
= π1,l(S|b(1))(−Rcost/l) +

∑
o

fO(o|0)·

V kπ1,l,l

(
0, bo(1)

)
− (1− φl)fO(o|1)V kπ1,l,l

(
1, bo(1)

)
The first term is non-decreasing with π1,l(S|b(1)) since
−Rcost/l ≥ 0. The second term is non-decreasing with
π1,l(S|b(1)) by the induction hypothesis and the assump-
tion that fO is TP2. The second equality in Eq. 38 follows
from Lemma 3 and because b(1) ∈ S

k,(2)
1,l,π1,l

.

The other cases, e.g. b(1) ∈ S
k,(2)
0,l,π1,l

∩ S
k,(2)
1,l,π1,l

, can be
discarded due to Lemma 5. Hence, W k

π1,l,l
(b(1)) is non-

decreasing with π1,l(S|b(1)) for all k ≥ 0.
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We now use Lemmas 1-6 to prove Theorem 1.C. The main
idea behind the proof is to show that the stopping sets in
state s = 1 have the form: S 2

1,l,π1,l
= [β̃1,l, 1], and that the

continuation sets in state s = 0 have the form: C 2
0,l,π1,l

=

[β̃0,l, 1], for some values β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L ∈ [0, 1].

Proof of Theorem 1.C. We first show that 1 ∈ S
(2)
1,l,π1,l

and

that 1 ∈ C
(2)
0,l,π1,l

. Since π1,l(S|1) = 1, by Lemma 4 we

have that 1 ∈ S
(2)
1,l,π1,l

and it follows from Eqs. 22-25 that
π̃2,l(0, b(1)) = C iff:∑

o

fO(o|0)V ∗π1,l,l−1(0, bo(1))−

fO(o|1)V ∗π1,l,l−1(1, bo(1)) ≥ 0 (39)

The left-hand side of the above equation is positive
due to the assumption that fO is TP2 and since∑
o fO(o|0)V ∗π1,l,l−1(0, bo(1)) ≥ 0 by Lemma 1 and

fO(o|1)V ∗π1,l,l−1(1,bo(1)) = 0 by Lemma 3. Hence, 1 ∈
C

(2)
0,l,π1,l

.
Now we show that S 2

1,l,π1,l
= [β̃1,l, 1] and that C 2

0,l,π1,l
=

[β̃0,l, 1] for some values β̃0,1, β̃1,1, . . . , β̃0,L, β̃1,L ∈ [0, 1].
From Eqs. 22-25 we know that π̃2,l(1, b(1)) = S iff:

Eπ1,l

[
Rlt
(
1, (a(1), C)

)
(40)

(φlt − 1)
∑
o

fO(o|1)V ∗π1,l,l−a(1)(1, b
o(1))

]
≥ 0

The first term in the above expectation is increasing with b(1)
(Eqs. 6-10). The second term is decreasing with b(1) (Lemma
2). Hence, we conclude that if π̃2,l(1, b(1)) = S, then for
any b′(1) ≥ b(1), π̃2,l(1, b

′(1)) = S. As a consequence, there
exists values β̃1,1, . . . , β̃1,L such that S 2

1,l,π1,l
= [β̃1,l, 1].

Similarly, from Eqs. 22-25 we know that π̃2,l(0, b(1)) = C
iff:

Eπ1,l

[∑
o

fO(o|0)V ∗π1,l,l−a(1)(0, b
o(1)) (41)

− fO(o|1)V ∗π1,l,l−a(1)(1, b
o(1))

]
≥ 0

Since fO is TP2 and π1,l(S|b(1)) is increasing with b(1), the
left-hand side in the above inequality is decreasing (Lemma 2
and Lemma 6). Hence, we conclude that if π̃2,l(0, b(1)) = C,
then for any b′(1) ≥ b(1), π̃2,l(0, b

′(1)) = C. As a result, there
exists values β̃0,1, . . . , β̃0,L such that C 2

0,l,π1,l
= [β̃0,l, 1].

APPENDIX D
HYPERPARAMETERS

The hyperparameters used for the evaluation are listed in
Table 4 and were obtained through grid search.

APPENDIX E
CONFIGURATION OF THE INFRASTRUCTURE IN FIG. 1

The configuration of the target infrastructure (Fig. 1) is
available in Table 5.

Game Parameters Values
Rst, Rcost, Rint,γ, φlt , L 20, −2, −1, 0.99, 1/2lt, 7
T-FP Parameters Values
c, ε, λ,A, a,N 10, 0.101, 0.602, 100, 1, 50
NFSP Parameters Values
lr RL, lr SL, batch, # layers 10−2,5 · 10−3, 64, 2
# neurons, MRL, MSL 128, 2× 105, 2× 106,
ε, ε-decay, η 0.06, 0.001, 0.1
HSVI Parameter Value
ε 3

TABLE 4: Hyperparameters of the POSG and the algorithms
used for evaluation.

ID (s) OS:Services:Exploitable Vulnerabilities

N1 Ubuntu20:Snort(community ruleset v2.9.17.1),SSH:-
N2 Ubuntu20:SSH,HTTP Erl-Pengine,DNS:SSH-pw
N4 Ubuntu20:HTTP Flask,Telnet,SSH:Telnet-pw
N10 Ubuntu20:FTP,MongoDB,SMTP,Tomcat,TS3,SSH:FTP-pw
N12 Jessie:TS3,Tomcat,SSH:CVE-2010-0426,SSH-pw
N17 Wheezy:Apache2,SNMP,SSH:CVE-2014-6271
N18 Deb9.2:IRC,Apache2,SSH:SQL Injection
N22 Jessie:PROFTPD,SSH,Apache2,SNMP:CVE-2015-3306
N23 Jessie:Apache2,SMTP,SSH:CVE-2016-10033
N24 Jessie:SSH:CVE-2015-5602,SSH-pw
N25 Jessie: Elasticsearch,Apache2,SSH,SNMP:CVE-2015-1427
N27 Jessie:Samba,NTP,SSH:CVE-2017-7494
N3,N11,N5-N9 Ubuntu20:SSH,SNMP,PostgreSQL,NTP:-
N13−16,N19−21,N26,N28−31 Ubuntu20:NTP, IRC, SNMP, SSH, PostgreSQL:-

TABLE 5: Configuration of the target infrastructure (Fig. 1).
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“Game theoretic model of strategic honeypot selection in computer
networks,” in Decision and Game Theory for Security, J. Grossklags
and J. Walrand, Eds., 2012.

[95] O. Vaněk, Z. Yin, M. Jain, B. Bošanský, M. Tambe, and M. Pěchouček,
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