
Failure detectors in Erlang

Kim Hammar

June 24, 2017

1 Introduction

This report covers the work done in a distributed system assignment im-
plemented in the Erlang programming language. The assignment involved
experiments with failure detectors and particularly Erlang’s built-in failure
detector support.

2 Main problems and solutions

• Implementation
The implementation for this task was very trivial and just involved
two processes pinging each other and having one process monitoring
the other process with Erlang’s built-in failure-detector.

• Experiments
Experiments were conducted to investigate how the semantics of Er-
lang’s failure detector works in practice.

2.1 Results

Local deployment Running the application in non-distributed mode on
a single machine, the crash of the producer process was detected almost
instantly with the message:

{producer,nonode@nohost} died; {badarith,....}

When running the two Erlang nodes locally and crashing the whole producer-
node the consumer instantly detected the crash and output:

{producer,gold@limmen} died; noconnection

1

Distributed deployment In the distributed setting things started to get
a bit more interesting.

When unplugging the Internet connection of the producer node for a few
seconds the consumer didn’t notice anything particular except a disruption
in the pings and when the producer was re-plugged the consumer received
ping messages with wrong sequence number.

Unplugging internet of the producer for a longer period of time revealed
some good hints of how Erlang’s failure detector works. It took 55s until
the consumer detected that there was no connection to the producer and
output:

** Node ’silver@192.168.1.91’ not responding **

** Removing (timedout) connection **

Another observation was that even after the consumer detected the crash of
the producer, when re-plugging the internet connection to the producer the
consumer continued receiving ping messages just like before.

Semantics of Erlang So what does these error messages tell us about
Erlang monitor semantics and guarantees?

Well first of all, an important observation here is that when the producer
is explicitly crashed the consumer outputs the actual error which we can
interpret as the consumer for sure knows that the producer has crashed
because it explicitly received a exit-message with reason of crash from the
producer. In the case where the network connection between the producer
and consumer is aborted the consumer only outputs that the producer is
“not responding” i.e we can interpret this as the consumer cannot tell if
the producer is crashed or just slow in responding. This is the classical two
generals problem which is inherent in any distributed system.

The Erlang documentation says as follows about the message delivery guar-
antees for Erlang:

A ’DOWN’ message will be sent to the monitoring process if Item
dies, if Item does not exist, or if the connection is lost to the node
which Item resides on.

”Delivery is guaranteed if nothing breaks” - and if something
breaks, you will find out provided you’ve used link/1. I.e. you
will get an EXIT signal not only if the linked process dies but
also if the entire remote node crashes, or the network is broken,
or if any of these happen before you do the link.

So how does the Erlang monitor work internally? It uses heartbeats/pings

2

between Erlang nodes that are connected to each other to detect which
nodes it has a connection to and which nodes are not responding. Reading
in the Erlang documentation it seems like the heartbeat between nodes that
are connected occurs every 15s and after 4 missed heartbeats (60s) the node
declares the other node as not responding.

3 Conclusions

If explicitly crashed, Erlang monitor will detect the crash almost instantly
since it will receive and exit-signal from the crashed process, if there is a
network partition however, it takes longer. Erlang monitors seems to use
a timeout of 60s as default, if there is not response within 60s the Erlang
monitor will conclude that the node is not responding. According to the
Erlang mailing-list the timeout can be configured with the flag -kernel

net ticktime T.

Erlang’s message passing is built on top of TCP and the semantics can be
regarded as FIFO reliable delivery. I.e if both sender and receiver is correct
and assuming network partitions eventually heal, messages from A to B will
eventually be delivered by B (It might be that messages sent during the
partition gets lost and not resent later, I could not find any information on
this in the documentation). If network partitions does not heal or if some
process is faulty the FIFO guarantee still holds but it is not guaranteed that
messages are eventually delivered.

3

Seminar 5

Chordy: a distributed hash table

Kim Hammar

October 13, 2016

1 Introduction

This report covers the work done in an assigment on distributed systems. A
basic variant of the Chord protocol was implemented in Erlang. Performance
tests and a smaller analysis of consistent hashing, Chord and P2P networks
was made.

2 Main problems and solutions

The main challenges encountered for this assignment were:

• Implementation of a structured P2P network that is decentralized
Implementation is based solely upon message passing in Erlang. Im-
plementation includes building a “ring” of nodes, maintaining ring-
stability when nodes join and leave, distributed storage and achieving
fault tolerance through replication and failure detection. Implementa-
tion have also been extended to optimize for routing-performance with
finger-tables.

• Examining how scalable the ring is and what bottlenecks to consider
Basic benchmarks were performed and analyzed.

2.1 Implementation

Nodes in the network are implemented as erlang processes that commu-
nicates solely though message passing. (Imperfect) failure detectors are
constructed with erlang monitors. Distribution is trivial with erlang as the
underlying platform.

1

2.2 Building a ring

To achieve a completely decentralized P2P network that uses the Chord
protocol, nodes are structured in a ring, an overlay network where each
node (peer) has the same role. To construct a conceptual ring of nodes the
essential requirement is that each node knows about its successor, which is
the next node in the ring (clockwise). Nodes are assigned m−bit identifiers
(keys) and are placed in the ring according to their key. To join an existing
ring you need to know at least one node that is a member of the ring. It
is common to use some kind of bootstrap-server that give out keys to new
nodes as well as the location of an existing node in the ring that the new
node can contact in order to join the ring.

Nodes in the ring are responsible for keys in the range (predecessorkey, key],
conceptually the range of keys that a node in the ring is responsible for is
the “hole” in the ring between itself and its predecessor. A desired property
of the ring is that nodes are evenly distributed, generally a hash-function is
used to achieve this. In a ring where nodes are evenly distributed the notion
of responsibility is important, since that it was makes the location of keys

consistent. In a perfectly balanced ring of N nodes, only
1

N
keys are moved

when a node join or leave the ring.

2.3 Stabilization

Chord uses a stabilization protocol that is ran periodically to check if the
ring is stable or if some re-ordering is neccessary. The purpose of the periodic
stabilization is to keep the ring stable when new nodes join, it does so by
letting each node communicate with its successor. The stabilization protocol
does not give any semantics for dealing with failures of other nodes.

2.4 Failures and Replication

Dealing with failures:
The correctness of the Chord protocol relies on the fact that each node
knows its successor. To achieve fault-tolerance it is essential that each node
in the ring can find a new successor in case of a crashed successor. The
recommended way of achieving this in Chord is to let each node maintain
a successor-list of size r. Each node in the ring should be equipped with
two failure detectors, one for its successor and one for its predecessor. If
a successor crashes the predecessor will eventually notice it and update its
successor pointer to the next node in the successor-list. If a predecessor
crashes the successor should clear its predecessor pointer so that it later can

2

add a new predecessor. With a list of size r and if node-crashes happens with
probability p then the ring can continue functioning with 1− rp probability.
Implementation wise the successor list is maintained by a periodic procedure
where each node queries its successor for its successor, and then the next
successor and so forth.

Replication:
By following the guidelines above one can achieve a P2P network that is
fault tolerant in the sense that it can rearrange itself to continue functioning
despite failing nodes. However, just being able to maintain the ring is not
enough if you want to achieve fault tolerance, you also want to be able to
preserve the data in case of failures, this is achieved through replication. At a
minimum every node should know about its successor and can replicate data
there, but a general rule of thumb is to have a replica-degree of atleast 3.
Where to replicate depends on the purpose of the replication (performance,
availability, load-balancing etc.), the simplest replication schema in Chord
for high availability is to replicate at nodes in the successor list. Replication
at successors is convenient since if a node crashes the node that will take
over responsibility of the keys of the crashed node is the successor, thus
successor replication minimizes data-transfer. Ofcourse replication is not as
easy as just sending replicas to each node in the successor list, you need to
deal with consistency, replication coherency and transfer of replicas when
nodes join/crash just to name a few things.

2.5 Routing performance

Routing of requests in a Chord ring is a O(N) operation. However, the time
to route requests in Chord can be reduced in most cases by maintaining
routing information at each node. In Chord-terms this routing information
is called finger-tables, which works like a routing table with fingers to logN
nodes in the ring. If finger-tables are used then with high probability a rout-
ing request will only be O(logN). Finger-tables where implemented in an
extended module node5.erl and benchmarks illustrating the effectiveness
of finger-tables is presented in the sequent section.

3 Evaluation

3.1 Setup

Test scenario:
Perform 1000 sequential lookup for keys in a chord ring. Varying parameters
between the tests are:

3

• Number of nodes in the ring
Five cases where examined: 1, 25, 50, 100 and 200 nodes. The keys are

evenly distributed among the nodes:
1000

nodes
keys per node.

• Routing technique in the ring
Two cases:

– Standard successor-routing, nodes don’t maintain any routing in-
formation. If a node gets a lookup-request for a key that it is not
responsible for it will forward the request to its successor.

– Finger-table routing. Each node maintains a finger table of size
m where m is the bit-length of identifiers for keys. In this test
m = 30.

• Latency
The ring of nodes was hosted on a single machine for the test, com-
munication latency of 1ms for routing of messages was simulated with:
timer:sleep(1).

Nodes Finger-table routing, time(s) Successor-routing, time(s)

1 0.001 0.001

25 4.40 24.00

50 5.40 252

100 6.32 347

200 7.33 199.1

4

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200

ti
m

e
 (

s
)

nodes in the ring

Chord Finger-table-routing vs Successor-routing

finger-table-routing
successor-routing

Figure 1: Test benchmarks

3.2 Analysis

The test results illustrates the ideal scenario for using finger-tables, when
all fingers are correct, lookup time is reduced drastically. The finger-table
routing achieves a O(logN) growth when the ring gets larger compared to
successor-routing which follows a linear expansion in routing latency.

In other settings finger-tables will probably not be as effective as shown in
this test. A ring that has a high churn-rate will increase the probability of
incorrect finger-tables which will reduce the efficiency of finger-tables. Also,
something that is not shown in the test is that maintaining finger tables
entails an overhead and increased usage of bandwidth since nodes need to
exchange more messages between each other.

4 Conclusions

A decentralized p2p system is an attractive choice for systems that requires
high availability and scalability. Chord is a protocol for building a self-
organizing distributed hash-table. The protocol is designed to handle nodes

5

joining/leaving in a dynamic environment. The core concept of the protocol
is relatively simple and easy comprehensible. Challenges arise when optimiz-
ing the implementation for performance and fault-tolerance. A decentralized
system can be a real challenge to debug and reason about, especially in com-
bination with other difficult areas such as replication, consistency, routing
etc.

6

Seminar 4

Groupy: a group membership service

Kim Hammar

October 6, 2016

1 Introduction

This report covers the work done in an assignment on distributed systems.
The given task was to implement a group membership service that provides
atomic multicast in Erlang. The purpose of the assignment was to learn
about the challenges involved and the theory behind group communication
in a distributed system.

2 Main problems and solutions

The main challenges encountered for this assignment were:

• Coordination of state among multiple application processes on different
nodes.
This is achieved by requiring nodes that want to update the state to
first send a request to the multicast layer which later will amount to a
multicast of the request to all members of the group. When the group
members receive the request they can update their state accordingly.

• The group service should be reliable under certain assumptions.
The implementation should be reliable under the following assump-
tions:
Assumption 1-A. Messages are reliably delivered.
Assumption 1-B. Erlang monitors behaves as perfect failure detec-
tors
Assumption 1-C. The Erlang system provides FIFO ordering of mes-
sages between two processes

That makes it slightly unrealistic, but even with those assumptions
there is a challenge to make the service reliable, it must tolerate process
crashes.

1

2.1 Coordination of state and views

Application processes will keep track of some state that should be synchro-
nized. Additionally, the application processes should have a consistent view
of the current group membership. The views are delivered to the application
process from the group membership service.

In this assignment the approach of a Coordinator is used. One arbitrary
process in the group will be the designated coordinator or leader. The rest of
the processes in the group are slaves. All messages that are directed towards
the group will be routed by the slaves to the leader. The leader will then
multicast the message to every member in the group.

Given the assumptions 1-A and 1-C, the only thing necessary to achieve
atomic multicast, view-synchrony and total order of messages in the group
is to add sequence numbers to messages and use erlangs built-in selec-
tive receive to pick out messages in the correct order from the mailbox.
The processes should then receive multicasted messages at the same logical
time.

Multicast layer

Application layer

slave

appapp

Network

app

leaderslave

Figure 1: Architecture

2.2 Reliability

The mechanisms above will not handle any type of failures. Since there is
no assumption that guarantees that nodes wont crash it is neccessary to
implement certain reliability mechanisms.

2

With the assumption 1-B, we equip every slave with a failure detector for
the group leader. For simplicity we dont bother to add failure detectors
to slaves since it does’nt matter for the application-processes if the view of
the group membership contains dead slaves. The proof-of-concept for this
implementation is that the view will be consistent across all nodes.

If the leader process crashes, all slaves will detect this through their failure
detectors. The slaves are then to elect a new leader, to do this we utilize
that every slave already possess a consistent view of the group. A simple
rule that the first slave in the list of slaves should be elected the new leader
is enough to reach consensus on who to elect (Note: there is a possibility
that a crashed node is elected leader, but due to the failure detectors this
will be detected immediately and a second election is initiated).

There is a special case when the atomicity of the multicast can be violated
despite having failure detectors: If the leader crashes during a broadcast it
might happen that it have sent messages to some nodes but not all.

To accomodate this we add a mechanism where a newly elected leader will
always resend the latest message, that will make sure that every member
of the group receives it. Since some nodes might receive duplicates it’s also
neccessary that the slaves are able to filter out duplicate messages.

2.3 Analysis

This implementation guarantees synchronized views for a group of processes.
The implemention does handle failures without adventuring the synchroniza-
tion.

Total order: Given that all broadcasts go through the designated leader
process and that erlang provides FIFO ordering between two processes and
that our implementation uses sequence numbers and selective-receive, all
correct processes of the group will see messages in the same order (dictated
by the leader) as long as messages are not lost.

However, as mentioned, this implementation relies on unrealistic assump-
tions. In a distributed system you cannot guarantee that omission failure
wont occur. For example the network might fail, which makes assumption
1-A a fallacy. If we cannot assume 1-A then it follows as a consequence that
we cannot assume 1-B either. The only assumption that the Erlang system
actually guarantees is 1-C.

Problems that arises when we falsify assumptions 1-A and 1-B:

• Omission failures might occur and thus we cannot assume that a simple
broadcast will reach every process in the group.

3

• Since we dont have access to a perfect failure detector, workers might
think the leader is dead when it is not.

3 What could possibly go wrong?

As stated in the assignment:

-our implementation does not work

When we developed our solution we promised atomic FIFO broadcast but
what if a message is lost and this situation happen:

worker1

worker2

leader

deliver

Figure 2: Message loss

This is something that can occur in a asynchronous system and with our
current implementation it will cause the workers to come out of sync.

If we assume that network-partitions don’t happen, it is possible to extend
our current solution to give correct behaviour in most cases (atomic multi-
cast is reducible to consensus), despite message-loss and process-failure.

A 2-phase-commit protocol is introduced to deal with message loss and
the accuracy requirement of the failure detector is relaxed and only re-
quire liveness and safety (processes might declare other correct processes
as suspected), this way the algorithm will always make progress despite
failures.

4

3.1 Solution

Problem 1. The network is unreliable. −→ each message should be ac-
knowledged.

Problem 2. Acknowledgements can be lost. −→ resend a few times, if still
no acknowledgement is received, declared the process to be faulty and keep
progressing.

In a module gms4 the group membership service have been extended as
follows:

i Slave processes in the group keeps a holdback-queue of uncommitted
messages/views.

ii When a slave process receives a multicasted message from the leader,
it does’nt deliver it to the application layer, instead it adds it to the
holdback-queue and sends back an acknowledgement to the leader.

iii For each message/view that the leader multicasts it will initiate a two-
phase-commit that works as follows:

(a) The leader multicast the message/view to each slave

(b) The leader collect acknowledgements from the slaves, if a timeout
occurs before all acknowledgements have been collected, the leader
resends the original message to the slaves that did’nt respond and
then collects acknowledgements again. This is done a number of
times until, either all slaves have acknowledged the message, or
until the message have been resend more times than a limit-value.

(c) If a slave doesn’t acknowledge the message after multiple resends,
the leader will discard the process as faulty, kill it and then continue
progressing. Note: in a real group membership service that follows
view-synchrony, the leader would install a new view without the
dead process before it issues the commit, but to not do too many
changes in gms4 compared to gms3, dead processes are still kept in
the view.

(d) After acknowledgement from all correct processes have been re-
ceived, the leader broadcasts a commit-message to all slaves that
acknowledged the original message.

(e) After multicasting the commit-message the leader repeats the acknowledgement-
procedure described above until it have received acknowledgements
for the commit-message by all slaves, or killed of non-responding
ones.

5

(f) When a slave receives a commit-message tagged with a recent sequence-
number it will extract the message from the holdback-queue of un-
committed messages and deliver it to the application layer, and
then send an acknowledgement to the leader.

worker1

worker2

leader

msg

msg ack

msg msg ack

commit

commit ack
ack

Figure 3: Distributed commit protocol to cope with message loss

3.1.1 Does it actually work?

- Yes, in a non-partitionable group.

Introducting a simulation of lost messages, similar to how process-crashes
is simulated, show that the gms4 module does handle message loss while
gms3 doesn’t. With the gms4 module, state-changes take a little bit longer
than for the gms3 module. If the maximum-amount of resends is set to 3,
the protocol of gms4 module will exchange O(6N) messages while the gms3

protocol only exhanges O(N) messages for each multicast.

However, the gms4 module will make sure that the state among the workers
will always be consistent (non-responding workers are killed of). Some ex-
periments show that setting the probability of message-loss as high as 25%
is no problem for gms4 using 3 resends as maximum, while gms3 will loose
synchronization immedieatly.

On the other hand, the gms4 will be more likely to suspect correct processes
to be faulty than the gms3 module. In a real-world scenario the timeout-
value that trigger resends and eventually killing processes should be decided
by some machine learning algorithm that learns the average communication
latency in the network.

3.2 Once more, what could possibly go wrong?

The third reason why things do not work is that we could have a situation
where one incorrect node delivers a message that will not be delivered by any
correct node. This could happen even if we had reliable send operations and

6

perfect failure detectors. How could this happen and how likely is it that it
does? What would a solution look like?

This is the scenario when the leader starts a broadcast and crashes before
the broadcast is finnished such that only a subset of the processes in the
group receives the message and then delivers it to the application layer,
and then the group processes that received the message also crashes, see
figure 4.

A solution to this problem is a solution that give uniform agreement, this
is not possible in an asynchronous system, atleast one of the processes
that received the commit-message needs to survive, otherwise the commit-
information is lost even if the surviving processes reform the group and elect
a new leader.

leader

worker1

worker2

deliver

Figure 4: Non-uniform agreement scenario

7

Seminar 3

Loggy: a logical time logger

Kim Hammar

September 30, 2016

1 Introduction

This report covers the work done in an assignment on distributed systems.
The given task was to implement a logical time logger in Erlang with the
intent of learning about logical time with a practical example.

2 Main problems and solutions

The main challenges encountered for this assignment were:

• Analyzing how we can see if the event-log from a set of workers are in
order or not
A obvious difference of distributed computing compared to local com-
puting is the latency of the sending and recieving of messages. Latency
can cause messages to arrive out of order. In this assignment latency
were simulated with random timeouts.

• Implement logical time (lamport time)
Logical time and lamport clocks have been implemented to be able to
apply a partial ordering of the events according to the happened-before
relation. The assignment requires ordering of the events during exe-
cution, which introduces further challenges in determining the order
of events before all events have been logged.

• Implement vector clocks
Vector clocks is an extension to the concept of lamport time. Vector
clocks solves some of the shortcomings of lamport clocks, but at the ex-
pense of a more memory expensive timestamp that grows proportional
to the number of workers.

1

2.1 Loggy

paul

john

ringo

{log,john,11,{received,{hello,1}}}

logger

{log,ringo,4,{sending,{hello,1}}}

{log,paul,5,{received{hello,12}}}

{msg, {hello,3},2}

{msg,{hello,4},10}

{msg,{hello
,1},3}

queue

log: 1 ringo {sending, {hello,1}}

log: 11 john {received {hello,1}}

Figure 1: Loggy

2.2 Analyzing the log

Before implementing logical time and adding lamport timestamps to log mes-
sages, a test run (with simulated latency) could give the following log:

log: na ringo {received,{hello,57}}

log: na john {sending,{hello,57}}

log: na john {received,{hello,77}}

log: na ringo {sending,{hello,77}}

The log above is out of order. For example, according to the log, {received,{hello,57}}
happened before {sending,{hello,57}}, which is not right. This un-
order can happen due to communication latency since the log messages
are sent by different workers, {received,{hello,57}} is logged by ringo

and {sending,{hello,57}} is logged by john. There is however nothing
from the log that implies that log-messages from the same worker are out

2

of order, which is to be expected considering that the Erlang system gives
a FIFO order of message delivery between two processes.

If we add lamport timestamps to the log messages but still allow the logger
to print the log messages in the order it received them we could get the
following log after a test run:

log: 2 ringo {received,{hello,57}}

log: 1 john {sending,{hello,57}}

log: 4 john {received,{hello,77}}

log: 3 ringo {sending,{hello,77}}

log: 4 ringo {received,{hello,68}}

log: 1 paul {sending,{hello,68}}

The lamport timestamps induce a partial ordering of events according to the
happened before (→) relation. Events that are causally related can be or-
dered totally but events that are concurrent can not. For example, log: 1

john {sending,{hello,57}} and log: 1 paul {sending,{hello,68}}
happened concurrently and can only be ordered if we introduce some tie-
breaker function.

2.3 Implementing logical time

The tricky part is for the logger to decide, by looking at timestamps and its
own logical clock, when it is safe to log a message, we define a message to
be safe to log if it does’nt break the partial ordering of timestamps. The
logger should print all messages in order of their timestamps, this can not
give a incorrect order according to the → relation, but it also means that
there will exist multiple “correct” orderings.

If the logger has a clock C that keeps track of timestamps t1...tn from the
last messages received from each of the workers 1...n, the decision if it’s
safe to log a message with timestamp ti can be implemented as follows:
If ti ≤ tj ∀j, j = 1, ..., n then it is safe to print the log message with
timestamp ti (under the assumption of FIFO delivery of messages between
two processes that erlang provides). Sketch of a proof:

Proof: By contradiction.

Assume ti ≤ tj ∀j, j = 1, ..., n and it is not safe to print the message with
timestamp ti, then there must exist a message k with timestamp tk < tj that
is sent by the same worker as the message with timestamp tj and arrived
out of order (message j arrived before message k). This contradicts the
assumptions declared above. �

3

• What does the ordered log tell us? - The log tells us the order in which
the events happened according to the happened-before (→) relation.
It does not tell us the order in which the events occured according to
physical time.

• How large will the holdback queue be? - The holdback queue can in
theory continue to grow forever, if one worker decides to never send
any message to the logger it will prevent the logger from updating its
clock, which will cause the holdback queue to stack up when the logger
receives messages from the other workers.

Something that I initially got wrong when implementing logical time that
made messages to be logged out of order was that I did’nt process the hold-
back queue in the right order, this was solved by sorting the holdback queue
after the timestamps before processing it and logging messages that are
safe.

2.4 Implementing vector clocks

The vector clock implementation gives some benefit compared to the lam-
port clock in that it provides more information about the causal relationship
between events, but it does so at the expense of being more memory expen-
sive, the vector clock grows proportional to the number of workers.

Comparison between two test runs:

Two main observations when comparing the two clock implementations,

1. With the lamport clock the holdback queue grows alot bigger than with
the vector clock, and when the logger is stopped there is generally a
bunch of messages in the holdback queue that is flushed. In contrast
with the vector clock, the log messages are printed quicker and it is
rare that there are messages in the holdback queue that have not yet
been printed when the logger stops.

2. The two different clocks gives different order in which messages are
logged. Both orders preserves causal ordering according to the →
relation.

For example, if we look at the two first log-entries from a testrun with both
clocks we can see that the entries differ:

(lamport clock)

log: 1 paul {sending,{hello,68}}

log: 1 john {sending,{hello,57}}

4

(vector clock)

log: [{john,1}] john {sending,{hello,57}}

log: [{ringo,1},{john,1}] ringo {received,{hello,57}}

Because the lamport clock implementation is just a integer counter, the log-
ger cannot safely print the log: 2 ringo {received,{hello,57}} mes-
sage before it have received a message with lamport timestamp ≥ 2 from
all of the workers. This is because as far as the logger know, the mes-
sage that ringo received that triggered the log message log: 2 ringo

{received,{hello,57}} could have been sent by any worker. This means
that with the lamport clock the logger will always print all initial send oper-
ations (timestamp = 1), before any receive operation can be printed.

With the vector clock implementation, when the logger receives log: [{ringo,1},{john,1}]
ringo {received,{hello,57}} it only has to wait before it has seen a mes-
sage with timestamp ≥ 1 from john and ringo, it does not have to wait
until it have received a message with timestamp ≥ 1 from all workers. This
is because the extra information that the vector clock gives compared to a
lamport clock allows the logger to compare the timestamps for each worker
separately. The result is that the logger can print log messages faster and
does not need to store as many messages in the hold-back queue.

Lamport clocks are not strongly consistent, for two arbitrary events i and j
with associated timestamps ti and tj : i → j =⇒ ti < tj , but ti < tj 6=⇒
i → j. This makes it appear that events are causally related (different
timestamps) even when they are not. For example say that we have four
processes, two processes send messages between each other and the other
two send messages between each other, when looking at the log it will seem
like all of the 4 processes are strongly causally related while in reality they
are only pairwise causaully related.

Vector clocks are strongly consistent and solves this problem. For any two
workers pi and pj with vector clocks vi and vj , and for any event x that
happened at pi we know the following: x → y =⇒ vi[i] < vj [i], and
vi[i] < vj [i] =⇒ x→ y. Which means that after execution we can analyze
the log more completely to find out which events are causally related and
which happened concurrently.

3 Conclusions

Ordering of events in a distributed system is not trivial, with that said it
is quite amazing how much you can achieve with the idea of logial time
and just maintaining a simple counter timestamp that is piggybacked to

5

messages.

Developing applications that are distributed are very different from devel-
oping concurrent applications on the same machine. Many assertions that
your program typically rely on in local computing is no longer true and you
have to expect things to be more unreliable.

6

Namy: a distributed name server

Kim Hammar

July 2, 2017

1 Introduction

This report outlines the solution to a assignment on distributed systems,
namely to implement a distributed name server that is similar to DNS. The
purpose of the assignment was to get familiar with the principles of DNS
and caching data in a tree structure.

2 Main problems and solutions

• Implementation
Implementing the distributed name server was not a lot of work given
the built-in primitives for distribution in Erlang and the given skeleton
code. What required some caution was when implementing the cache
and the recursive lookup which is not crystal clear at first sight.

• Experimenting with the cache
The main undertaking for this assignment was experimenting with the
cache properties, in particular modifying the TTL of the cache entries
and measuring how this affects traffic and how this affects accuracy of
lookups.

2.1 Implementation

The global Domain Name System keeps track of the domain-names on the
Internet. It is probably the world’s most distributed database and it follows
a tree-structure. DNS maps domain names to IP-addresses. The imple-
mentation for this assignment is a miniature of DNS that keeps track of
domain-names of hosts in the distributed Erlang application. It maps do-
main names to Erlang process-identifiers.

1

root

se com

kth
yahoo google

Figure 1: DNS tree

The protocol in our implementation is of course not identical to the global
DNS. Global DNS uses a binary protocol over UDP, in this implementation
we use an Erlang-message protocol including messages such as {request,
Pid, Domain}, {register, Name, Entry} etc.

The entities in a DNS distributed system can be divided into client (makes
the requests), resolver(resolves requests, queries the servers and caches re-
sponses), servers (responsible for some domain). The resolver is typically a
program running on the host of the client.

Resolver

Where is ftp.kth.se?
root

kth

ftp.kth.se −> 10.10.10.10
.....
.....
.....
.....

se

kth.se −> 10.10.10.9

.....

.....

.....

.....

se −> 10.10.10.8

.....

.....

.....

.....

10.10.10.8

10.10.10.9
10.10.10.10

Cache

root−>10.10.10.7TTL=inf

.....

.....

.....

.....

(1)

(2)

Cache
root−>10.10.10.7
se −> 10.10.10.8

kth.se −> 10.10.10.9

10.10.10.10ftp.kth.se−>TTL=5

TTL=inf
TTL=5

TTL=5

.....

update cache

Figure 2: DNS lookup

2

2.2 Experimenting with the cache

In the vanilla set-up the time-to-live is zero seconds. What happens if we
extend this? How much is traffic reduced?

How much traffic is reduced depends on the rate of client requests and how
many sub-domains are involved. The message complexity of a regular DNS
lookup through the resolver with no hit in the cache is linear proportional
to the depth of the domain: O(2+2N) where N is the depth of the domain.
The message complexity of a regular lookup at the resolver when there is a
cache hit is constant: O(2).

What happens when TTL of cache entries is 1 min and hosts are moved
while they are cached?

While the cache entry is valid the resolver will respond directly based on
the cache entry which means that if a host is moved while cached at the
resolver the resolver will give stale responses to lookup requests for the time
the cache entry is valid.

2.3 Going further

Our cache also suffers from old entries that are never removed. Invalid
entries are removed and updated but if we never search for the entry we will
not remove it. How can the cache be better organised?

Some simple enhancements to the resolver cache procedure is to have the
resolver go through and update the whole cache periodically at some fixed
time interval to avoid stacking up stale entries forever.

How would we do to reduce search time? Could we use a hash table or a
tree?

Currently the cache is on the format of [{Domain, Expire, dns|host,

Pid}], i.e a list of entries. Lists in Erlang are linked-lists and have O(N)
access performance. This can be improved by using some data-structure
offering better complexity for access (e.g constant or logarithmic) such as
a map, a candidate for the key of each entry is then the hash of the do-
main.

Other possible data-structures could be to use a bloom filter which give
constant lookup time, balanced binary trees (B-trees or AVL-trees) which
give O(logN) lookup complexity or a sorted resizable array which can be
searched with binary search and give O(logN) lookup complexity. Bloom
filter should only be considered if space is a concern since it is the main perk

3

of bloom filters. Otherwise bloom filter brings unnecessary disadvantages in
the form of false positives.

3 Conclusions

This assignment gave a good rundown of how the DNS works and what kind
of design choices there is to consider when deciding on the architecture of
a distributed name server. In this task we pretty much followed the design
of the global DNS which undoubtedly have proven to be a quite successful
architecture, but one could also consider other architectures and abandon
the hierarchical structure and the recursive resolving of names to a more
flat architecture.

4

Primy: finding a large prime

Kim Hammar

June 23, 2017

1 Introduction

This reports presents the implementation of a distributed application for
finding primes and highlights issues and trade-offs related to the application
design and inherent challenges present in a distributed setting.

2 Main problems and solutions

• Implementation
The implementation follows a basic Erlang pattern with different pro-
cesses living inside message-receive loops with certain state.

• Speeding it up
In this lab it has not been attempted to optimise the algorithm for
checking if a number is prime or not. Rather the interesting part is
how the the distribution can help improve the performance.

• Making it robust
In an open distributed system there is a necessity to be able to handle
byzantine behaviour and malicious processes, the main approach taken
is to utilise quorum to be able to allow up to N

2 − 1 byzantine worker-
processes in a system of N workers.

2.1 Implementation

The processes are divided into server and workers. The server is the one
orchestrating the checking for primes and keeps track of the worker nodes.
The worker nodes checks if a given number is a prime on behalf of the server
and reports back its findings.

1

server

w1 w2 w3 w4

Figure 1: Server-Worker architecture

2.2 Speeding it up

An optimization for managing requests for new primes faster is that the
server will keep track of which workers are busy or not and if it receives
a request when all workers are busy it will itself check for primality. It
is important to note that there are no fee lunch and the undertakings to
make the server more robust actually have a negative affect on performance
but this optimisation can help somewhat. The main bottleneck is the server
waiting for responses from the workers, as we’ll get back into in the following
section, the server will wait for a quorum of responses from workers before
deciding whether a given number is prime or not.

2.3 Making it robust

To handle dying workers we use the server as a superviser for the worker
nodes. The server uses failure detectors to detect whenever a worker node
has crashed (eventual failure detector ♦P) and will then spawn a new worker
node.

To deal with byzantine behaviour the main undertaking, as mentioned, is
to use a voting-procedure where a quorum of workers need to regard a par-
ticular number as prime for the server to trust the decision and vice-verse
for non-primes. This means that as long as there are N

2 correct nodes the
system can deal with byzantine behaviour.

2

server

w1 w2 w3 w4

P

P
P NP

4 votes: 3 prime vs 1 non−prime

Output: Num is Prime

Byzantine node

Figure 2: A quorum system for managing byzantine nodes

3 Conclusions

There is no free lunch, trade-offs is a very big part of designing distributed
systems and it is important to be clear what your requirements and design
goals are to know which trade-offs are worth it.

3

Seminar 2

Routy: a small routing protocol

Kim Hammar

September 27, 2016

1 Introduction

This report covers the work done in an assignment on distributed systems.
The given task was to implement a link-state routing protocol in Erlang with
the purpose of learning the construction and theory of link-state routing
protocols, consistent views and problems related to network failures.

2 Main problems and solutions

The main challenges encountered for this assignment were:

• Implementation of a link-state routing protocol and connecting routers
together to a distributed system

The implementation was done in Erlang with built-in primitives for
connecting nodes and message-passing between nodes.

• Examining how the system handles network failures and how to keep
a consistent view over the network.

Different test scenarios were examined and analyzed.

2.1 Implementation

In link-state routing every node constructs a graph-like map over the net-
work connectivity. The map shows which nodes are connected to each other.
This map is refered to as a link-state database. For the construction of the
map to be possible it is required that routers in the network shares informa-
tion about their connectivity. Routers share their connectivity information
with other routers through link-state messages. The link-state messages

1

are spread over the network through flooding, this is very useful since the
router from where the message originated can reach a large number of nodes
in the network with the update just by sending the message to its neigh-
bours. On the other hand flooding also itroduces the risk that link-state
messages are sent many times to the same node due to cyclic paths in the
network. To avoid flooding of old messages, sequence numbers are used,
where routers keep track of viewed messages and can discard (disrupt the
flooding) old messages. Figure 1 shows an example of a network of routers
and the corresponding link-state database (map) and routing table of one
of the routers.

2

A B

C

D

E

2

47

1

5

3

link-state database at router E

A B C D E
B/2 A/2 D/3 C/3 A/7

E/7 E/4 E/1 E/5 B/4

C/1

D/5

Routing table at router E

Destination Next hop

E −
A B
B B
C C
D C

Figure 1: Link-State Routing

Routers in the network are implemented as erlang processes that simulates
network communication through message passing. The routers mimic an
implementation of a constrained neighbour discovery protocol by using er-
lang monitors. With erlang monitors, the routers can detect failures of their

3

neighbours. The protocol is constrained in the sense that each neighbour
needs to be added manually in the first place.

2.2 Failures and Consistency

Failures are discovered through erlang monitors, however the erlang moni-
tor is designed particularly for process failures rather then network failures.
The monitor will discover process crashes very quickly since the monitored
process will send a DOWN message to the observer. A network failure can
also be discovered since the erlang monitor will eventually throw a timeout-
exception if the monitored process is not responding, but network-failures
will not be detected as quickly as a process failure. In a non-erlang world,
the routers would instead use some kind of heart-beat protocol to keep track
of their neighbours.

Routing protocols are dependent on that routers share information with each
other in order to keep up-to-date view of the network. Link-state protocols
such as OSPF is based on routers sending information about their connec-
tivity, this information is then used at the routers to keep their view of the
network consistent. The view is then used at each router to calculate the
optimal routing table. Since the routers are dependent on messages from
other routers to keep their view consistent, the views are inherently even-
tually consistent, and there will be times where routers contain inconsistent
views. In particular in the implementation of this assignment, views might
not even be eventually consistent since the routers won’t broadcast their
network updates or update their routing tables if we don’t explicitly com-
mand them to do so with: router ! broadcast and router ! update.
When the view of the network is inconsistent at a router, the router might
route messages such that they will never reach their destination or such that
they take unneccesary long paths to their destination.

To improve consistency and reduce the time of in-consistency, routers should
always share the information about their connectivity when a network change
occurs, and even if no change have happened the information should be sent
periodically to inform eventual new-comers on the network.

For example, if the link between router E and B in the network depicted in
figure 1 fails, then the network should discover this failure and the routing
tables should be recomputed. Figure 2 shows how the routing table and
link-state database of router E is changed.

4

A B

C

D

E

2

X7

1

5

3

link-state database at router E

A B C D E
B/2 A/2 D/3 C/3 A/7

E/7 E/1 E/5

C/1

D/5

Routing table at router E

Destination Next hop

E −
A A
B A
C C
D C

Figure 2: Link-State Routing

5

3 The world

Below you can see a map over the network used for testing. The links are
by default one-way in the implementation, however in the map below a link
represents a bidirectional link (I set it up that way, with two links between
each connected city). The world is distributed on 8 erlang nodes and 3
different host-machines.

r1, stockholm r2, gothenburgr3, uppsala

norway@192.168.1.140

r1, oslo

england@192.168.1.69

r2, liverpool

r1, london

china@192.168.1.91

r1, beijing r2, shanghai

denmark@192.168.1.140

r1, copenhagen

r2, odense

india@192.168.1.91

r1, delhi

r2, mumbai

r1, belfast

scotland@192.168.1.69

r1, glasgow

r2, bergen

northern_ireland@192.168.1.69

sweden@192.168.1.140

Figure 3: The world

3.1 Test

A test to see if the routing in the world works and how the network handles
failures.

Test scenario:
Route a message from Gothenburg to Mumbai, then kill one of routers that
the used route depends on. After updating the routing tables, try to re-send

6

the message.

3.2 Result

Figure 4: Routing table at gothenburg, sweden. Gothenburg sends a mes-
sage with destination address: Mumbai.

Figure 5: The message is routed through norway. First the message arrives
at Oslo, which then forwards the message to Bergen.

Figure 6: Bergen routed the message to China, Shanghai. Shanghai forwards
the message to Beijing.

7

Figure 7: Beijing routed the message to Delhi, India. Delhi then forwards
the message to Mumbai. Mumbai is the final destination and thus receives
the message.

Figure 8: Killing the Shanghai router.

Figure 9: Bergen receives a notification that the contact to Shanghai is lost.
Bergen then updates the routing table and floods the information about the
updated links on the network.

8

Figure 10: Gothenburg have received the information about changes in the
network and have recomputed its routing table. Gothenburg sends a message
with destination Mumbai again. However, this time the message will take
a different route due to the failure of the Shanghai-router. The message is
first sent to Uppsala who then forwards it to Stockholm.

Figure 11: Stockholm forwarded the package to Copenhagen, Denmark.
Copenhagen then directs the message to Odense.

Figure 12: Odense has a direct link to london and forwards the message
there. London then routes the message to Beijing, China.

9

Figure 13: Beijing receives the message and forwards it to Delhi.

Figure 14: Delhi recieves the message and routes it to Mumbai. Mumbai is
the final destination and receives the message.

3.3 Conclusions

One of the desired properties of link-state routing is to achieve an au-
tonomous network of routers that relatively quickly can discover failures
or other changes in the network and recompute their routing tables when
neccessary, before a failed link causes package loss.

When stopping a router or killing a node, the monitor discovered the failure
instantly (minimal delay since on the same LAN). However when silently
disconnecting one host from the network, it took ≈ 30 seconds for the other
node to discover the failure due to a timeout in waiting for a response.

For this test we did not allow the routers to update their tables nor broad-
casts link-state messages when they felt like it, instead this was implemented
manually through a message-API, which gave us more control over the test
scenario. But ofcourse in a real-world scenario this would be done automat-
ically, where routers could send link-state message on defined time-intervals
and update their tables as soon as they receive new information.

The test shows that OSPF is a quite elegant solution to a very important
problem. The protocol is quite simple but gives very desirable properties of
quick propagation of network changes and maintainence of routing tables. In
the test we saw that the router in Gothenburg initially routed the package
to Mumbai in 6 hops by going through Norway and Bergen. After the
failure of the router in Shanghai this route was no longer possible. The
neighbours of Shanghai noticed the failure and broadcasted the information
to their neighbours, and eventually the information got propagated over the
network to Gothenburg. Gothenburg could then with the updated view of
the network figure out that the message can still be routed to Mumbai, but
his time in 8 hops, by going the way through Denmark and England.

10

Seminar 1

Rudy: a small web server

Kim Hammar

September 15, 2016

1 Introduction

This report covers the work done in an assignment on distributed systems.
The given task was to implement a small web server in Erlang with the
purpose of getting acquainted with the procedures of working with socket
API’s, the client-server model and the HTTP protocol.

2 Main problems and solutions

The simple web server of interest in this assignment consists of three main
parts:

• HTTP parser
The server needs to parse incoming HTTP requests in order to know
how to respond

• HTTP API

– What to respond to certain requests?

– What resources are available for the client? (Which URI’s are
mapped to the resources?)

• Server architecture

– How is concurrency handled?

– Which processes are involved? and how are the different proce-
cesses related?

– How to optimize the server’s utilization of resources?

– How to make the server scalable?

1

2.1 HTTP Parser

HTTP is a text-based protocol so to parse a request the server go through it
character by character and compare it against the defined HTTP protocol
rules. The server might receive HTTP requests in chunked parts, which
introduces the problem of knowing when the full request is received. The
rules of the HTTP protocol entails that the header part of the request (which
comes after the request-line) is ended by a double CRLF. When the server
have received a double CRLF it can parse the received headers and extract
the Content-Length header to determine how large the body part of the
request is. If the Content-Length header is absent, the server needs to
listen until the client closes the connection since then the server cannot tell
if it have received the full body of the request or not.

2.2 HTTP API

After the request is parsed the webserver decides how to respond. HTTP is
the protocol for communication and since it’s a request-reply protocol the
server is concerned with how to reply to requests.

This minimalistic web-server serves static content that are placed in a folder
of choice, if the file is not found a 404 status code is returned. The server
only handles HTTP requests with the HTTP-method GET.

%%Response for a get-request to a specific URI

route({{get,[$/|FileName], _}, _, _})->

timer:sleep(40), %% Simulate network latency

case file:read_file("priv/" ++ FileName) of

{error, Err} ->

io:format("Error reading file ~n ~p ~n", [Err]),

Body = "/" ++ FileName ++ " not found",

http:error(Body, length(Body));

{ok, Bin} ->

http:ok(binary:bin_to_list(Bin), length(binary:bin_to_list(Bin)))

end;

2.3 Server Architecture

When developing the server, different architectural approaches were looked
at (a thread refers to a erlang process).

• Single-threaded server - One thread that listens for incomming requests
and handles them.

2

• Multi-threaded server

– Worker-pool architecture - The server creates a fixed pool of
worker threads. Worker threads are programmed to listen for and
handle requests when they’re started. The worker-pool aproach
minimizes overhead of creating new processes but have a disad-
vatage of inflexibility.

– Thread-per-request architecture - One thread listening for incom-
ing connections and for every connection a new thread is spawned
to handle 1 request from the connection and then terminate. If
the client wants to send multiple requests it is forced to open a
new connection for each request.

– Thread-per-connection architecture - One thread listening for in-
coming connections and for every connection a new thread is
spawned to handle the connection. Can utilize http persistent
connections to minimize TCP overhead.

Measurements where made to examine the behaviour of different server ar-
chitectures, the results are presented in the sequent section.

3 Evaluation

3.1 Delimitations

Both the server and the client computer used for this test have 8 CPU cores
available. The server simulates a 40 milliseconds delay with timer:sleep(40)

for each request. The clients sends requests to the url: ”/” from which the
server replies with a 53-byte reply of: ”"Welcome to my simple webserver

in Erlang! /Kim Hammar"”

The point of interest for the benchmarks were how the different server-
architectures behaved when dealing with concurrent users compared to a
single user. Two tests with five different test cases each were examined for
all the server-architectures, the cases differ on how many concurrent threads
on the client-machine is sending requests to the server.

3.2 Results

Test 1: One request per connection

For this test, the client sends one request per connection. For each request
the client waits for a response before it closes the connection and opens up
a new one.

3

Client-
threads

Connections Total requests Server architecture Time(s)

1 1024 1024 single-thread 109.13

2 1024 1024 single-thread 103.43

4 1024 1024 single-thread 103.43

8 1024 1024 single-thread 127.14

16 1024 1024 single-thread 127.65

1 1024 1024 worker-pool (8) 108.82

2 1024 1024 worker-pool (8) 54.20

4 1024 1024 worker-pool (8) 27.21

8 1024 1024 worker-pool (8) 13.58

16 1024 1024 worker-pool (8) 10.41

1 1024 1024 thread-per-request 108.67

2 1024 1024 thread-per-request 54.85

4 1024 1024 thread-per-request 27.16

8 1024 1024 thread-per-request 14.50

16 1024 1024 thread-per-request 6.90

1 1024 1024 thread-per-connection 108.67

2 1024 1024 thread-per-connection 54.97

4 1024 1024 thread-per-connection 27.09

8 1024 1024 thread-per-connection 13.58

16 1024 1024 thread-per-connection 6.85

4

 0

 20

 40

 60

 80

 100

 120

 140

 160

thread-per-connection thread-per-request worker-pool single-thread

s
e

c
o
n
d

s

threads

Benchmarks

1client
2clients
4clients
8clients

16clients

Figure 1: Benchmarks for Test1

As was predicted, the multi threaded servers exhibit a distinct performance
boost over the single threaded server when dealing with concurrent users.

Further more it is interesting to see that the three different variants of
multi-threaded servers perform very similar. This was also expected, con-
sidering that the clients sent only one request per connection the thread-per-
connection and thread-per-request does basicly the same thing.

Also, the worker-pool architecture which consists of 8 threads (same as the
number of cores on the server machine) reaches basicly the same throughput
when dealing with 8 concurrent clients as the servers that creates threads
dynamically. When there are 16 concurrent clients the results show that
the servers that create threads dynamically give slightly higher throughput
than the worker-pool.

Test 2: Client tries to send all requests over the same connection
A final benchmark was made to examine how the overhead of creating new
TCP connections affect the performance. In this test the client will try to
send requests over the same connection rather than closing the connection
after each request (this is often the case in real-world scenarios of HTTP
communication, where browsers use HTTP-persistent connections).

Bare in mind that a prerequisite for sending multiple requests over the same
connection is that the server keeps the connection open. If the server closes

5

the connection, the client is forced to open up a new one in order to com-
municate.

Client-
threads

Connections Total requests Server architecture Time(s)

1 256 256 thread-per-request 27.301071

1 512 512 thread-per-request 55.17

1 1024 1024 thread-per-request 109.120926

1 2048 2048 thread-per-request 217.15903

1 1 256 thread-per-connection 26.85301

1 1 512 thread-per-connection 52.07

1 1 1024 thread-per-connection 105.558201

1 1 2048 thread-per-connection 203.094831

 0

 50

 100

 150

 200

 250

257requests 512requests 1024requests 2048requests

s
e
c
o
n
d
s

threads

Benchmarks

thread-per-connection
thread-per-request

Figure 2: Benchmarks for Test2

The results demonstrate that the performance difference of opening a new
connection for each request compared to reusing an old request is very mod-
est. There is however a slight difference which increases with the number of
requests.

6

4 Conclusions

The results manifest that to fully utilize a multi-core architectured hard-
ware you can advantegously use a multi-threaded architecture over a single-
threaded architecture.

As a result of the delimitations mentioned, we cannot draw precise conclu-
sions of wether a worker-pool is beneficial over dynamic creation of threads.
The results from the limited benchmarks show that dynamic creation of
threads was benifical in this case. This is likely because even if the upper-
bound on parallel tasks on the server machine is 8, having more erlang
processes than 8 can hide some latency and improve performance that way.
The latency that can be hidden is that of context-switching between han-
dling a connection and listen for a new connection, however the dynamic
creation of threads architecture is more vulnerable than the worker-pool ar-
chitecture to a potential denial-of-service (DoS) attack. The dynamic server
will happily try to create billions of threads, which will eventually cause it
to crash.

The results also testify that, when possible, TCP-connections should be
reused in order to reduce the overhead of creating new connections. Even
though the overhead experienced in the tests was supringsingly small in
proportion to the number of requests.

Principially the results can be regarded as rather credible (considering the
stated delimitations), the tests were ran multiple times and showed off ba-
sicly the same results every time except for one parameter; The single-
threaded server differed on ±10 seconds when dealing with 1024 requests
from 8 − 16 clients. It’s hard to say why. The rest of the results only
differed at most ±1 second.

For all of the tests made, the client got 0 timeouts from the server.

7

Snapy: the search for dead marbles

Kim Hammar

July 8, 2017

1 Introduction

This report presents the work done in an assignment on distributed sys-
tems. The assignment entailed to implemented a snap-shot algorithm in
Erlang. The algorithm resembles the Chandy-Lamport algorithm and con-
structs a global snapshot of the system state, this state is then used to
perform garbage collection of marbles.

2 Main problems and solutions

• Implementation
Implementation was a bit tricky for this assignment since I found some
inconsistencies in the code-snippets provided and the purpose of the
GUI was poorly described. As a result the GUI was designed from
scratch and the result is depicted in the figure below.

Figure 1: GUI

• Tests The GUI was very helpful in conducting verdicts when testing
the system and measuring the effectiveness of the garbage collector.

1

3 System Architecture

Every worker in the system knows about each other so the processes and
communication channels take the form of a fully-connected graph. In the
figure below an instance of the network with four workers is shown.

w1 w4

w3w2

Figure 2: Network of processes

In the snapshot-algorithm used (variant of Chandy-Lamport) the state of
messages in transit is included in snapshots by the use of “markers” which
works as a flush of the communication channels.

w1

w4

w3

w2

controller

snap

marker

report

compute
snapshot

garbage−collect

Figure 3: Snapshot algorithm

4 Tests

After testing different versions of the snapshot-algorithm it is clear that
the final version which too takes in account the messages in transit when

2

taking the snapshot is most effective. The first version of the snapshot-
algorithm which didn’t take messages in transit into account could in some
cases, depending on the network latency (simulated), garbage collect marbles
prematurely.

The downside of the snapshot-algorithm that resembles Chandy-Lamport is
that it has very high message-complexity which makes it more expensive to
perform.

5 Conclusions

Computing snapshots of the global state in a distributed system is not as
easy as just aggregating each process local state, one much take messages
that are in transit on the channels into account as well. The Chandy Lam-
port algorithm is a classic algorithm for computing this by using so called
“markers”.

Garbage collection in a distributed system is complex and computing a
global snapshot is not the only way nor the most efficient way of doing
it. Global snapshots is useful in more settings than just garbage collection,
it can be used to break deadlocks or just general debugging of distributed
systems.

3

	Introduction
	Main problems and solutions
	Results

	Conclusions
	Introduction (1)
	Main problems and solutions (1)
	Implementation
	Building a ring
	Stabilization
	Failures and Replication
	Routing performance

	Evaluation
	Setup
	Analysis

	Conclusions (1)
	Introduction (2)
	Main problems and solutions (2)
	Coordination of state and views
	Reliability
	Analysis

	What could possibly go wrong?
	Solution
	Does it actually work?

	Once more, what could possibly go wrong?

	Introduction (3)
	Main problems and solutions (3)
	Loggy
	Analyzing the log
	Implementing logical time
	Implementing vector clocks

	Conclusions (2)
	Introduction (4)
	Main problems and solutions (4)
	Implementation
	Experimenting with the cache
	Going further

	Conclusions (3)
	Introduction (5)
	Main problems and solutions (5)
	Implementation
	Speeding it up
	Making it robust

	Conclusions (4)
	Introduction (6)
	Main problems and solutions (6)
	Implementation
	Failures and Consistency

	The world
	Test
	Result
	Conclusions

	Introduction (7)
	Main problems and solutions (7)
	HTTP Parser
	HTTP API
	Server Architecture

	Evaluation (1)
	Delimitations
	Results

	Conclusions (5)
	Introduction (8)
	Main problems and solutions (8)
	System Architecture
	Tests
	Conclusions (6)

