
Learning Security Strategies through Game Play and Optimal Stopping

Kim Hammar 1 2 3 Rolf Stadler 1 2 3

Abstract
We study automated intrusion prevention using
reinforcement learning. Following a novel ap-
proach, we formulate the interaction between
an attacker and a defender as an optimal stop-
ping game and let attack and defense strategies
evolve through reinforcement learning and self-
play. The game-theoretic perspective allows us to
find defender strategies that are effective against
dynamic attackers. The optimal stopping formu-
lation gives us insight into the structure of op-
timal strategies, which we show to have thresh-
old properties. To obtain the optimal defender
strategies, we introduce T-FP, a fictitious self-
play algorithm that learns Nash equilibria through
stochastic approximation. We show that T-FP
outperforms a state-of-the-art algorithm for our
use case. Our overall method for learning and
evaluating strategies includes two systems: a sim-
ulation system where defender strategies are incre-
mentally learned and an emulation system where
statistics are produced that drive simulation runs
and where learned strategies are evaluated. We
conclude that this approach can produce effective
defender strategies for a practical IT infrastruc-
ture.

1. Introduction
We present a novel approach to automatically learn security
strategies for an attacker and a defender. We apply this
approach to an intrusion prevention use case, which involves
the IT infrastructure of an organization (see Fig. 1). The
operator of this infrastructure, which we call the defender,
takes measures to protect it against a possible attacker while
providing services to a client population. (We use the term

1Division of Network and Systems Engineering 2KTH Center
for Cyber Defense and Information Security 3KTH Royal Institute
of Technology, Stockholm, Sweden. Correspondence to: Kim
Hammar <kimham@kth.se>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

Attacker Clients

. . .

Defender

1 IPS1

alerts

Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Figure 1. The IT infrastructure and the actors in the use case.

”intrusion prevention” as suggested in the literature, e.g. in
(Fuchsberger, 2005). It means that the attacker is prevented
from reaching its goal, rather than prevented from accessing
any part of the infrastructure.)

We formulate the use case as an optimal stopping game, i.e.
a stochastic game where each player faces an optimal stop-
ping problem (Wald, 1947; Dynkin, 1969). The stopping
game formulation enables us to gain insight into the struc-
ture of optimal strategies, which we show to have threshold
properties. To obtain effective defender strategies, we use
reinforcement learning and self-play. Based on the threshold
properties of optimal strategies, we design an efficient self-
play algorithm that iteratively computes optimal defender
strategies against a dynamic attacker.

Our method for learning and evaluating strategies includes
building two systems (see Fig. 2). First, we develop an
emulation system where key functional components of the
target infrastructure are replicated. This system closely
approximates the functionality of the target infrastructure
and is used to run attack scenarios and defender responses.
These runs produce system statistics and logs, from which
we estimate distributions of infrastructure metrics. We then
use the estimated distributions to instantiate the simula-
tion model. Second, we build a simulation system where
game episodes are simulated and strategies are incremen-

Learning Security Strategies through Game Play and Optimal Stopping

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

EMULATION SYSTEM

TARGET

INFRASTRUCTURE

Model
Estimation

Strategy Mapping
π

Selective
Replication

Strategy
Implementation π

SIMULATION SYSTEM
Game model &

Reinforcement Learning

Strategy evaluation &
Model estimation

Automated
Intrusion Prevention

Figure 2. Our approach for finding and evaluating intrusion pre-
vention strategies.

tally learned. Learned strategies are then extracted from the
simulation system and evaluated in the emulation system.
(A video demonstration of our software framework that im-
plements the emulation and simulation systems is available
at (Hammar & Stadler, 2022a).)

We make three contributions with this paper. First, we
formulate intrusion prevention as an optimal stopping game.
This novel formulation allows us a) to derive structural
properties of optimal strategies using results from optimal
stopping theory; and b) to find defender strategies that are
effective against attackers with dynamic strategies. We thus
address a limitation of many related works that consider
static attackers only (Ridley, 2018; Blum, 2021; Tran et al.,
2021; Hammar & Stadler, 2021; 2022b; Akbari et al., 2020;
Liu et al., 2018). Second, we propose T-FP, an efficient
reinforcement learning algorithm that exploits structural
properties of optimal stopping strategies and outperforms
a state-of-the-art algorithm for our use case. Third, we
provide evaluation results from an emulated infrastructure.
This addresses a common drawback in related research that
relies on simulations to learn and evaluate strategies (Blum,
2021; Ridley, 2018; Tran et al., 2021; Schwartz et al., 2020;
Hammar & Stadler, 2020).

2. The Intrusion Prevention Use Case
We consider an intrusion prevention use case that involves
the IT infrastructure of an organization. The operator of this
infrastructure, which we call the defender, takes measures
to protect it against an attacker while providing services to a
client population (Fig. 1). The infrastructure includes a set
of servers that run the services and an Intrusion Prevention
System (IPS) that logs events in real-time. Clients access
the services through a public gateway, which also is open to
the attacker.

The attacker’s goal is to intrude on the infrastructure and
compromise its servers. To achieve this, the attacker ex-
plores the infrastructure through reconnaissance and ex-
ploits vulnerabilities while avoiding detection by the de-
fender. The attacker decides when to start an intrusion and
may stop the intrusion at any moment. During the intrusion,
the attacker follows a pre-defined strategy. When deciding
the time to start or stop an intrusion, the attacker considers
both the gain of compromising additional servers and the
risk of getting detected. The optimal strategy for the attacker
is to compromise as many servers as possible without being
detected.

The defender continuously monitors the infrastructure
through accessing and analyzing IPS alerts and other statis-
tics. It can take a fixed number of defensive actions, each
of which has a cost and a chance of preventing an ongo-
ing attack. An example of a defensive action is to drop
network traffic that triggers IPS alerts of a certain priority.
The defender takes defensive actions in a pre-determined
order, starting with the action that has the lowest cost. The
final action blocks all external access to the gateway, which
disrupts any ongoing intrusion as well as the services to the
clients.

When deciding the time for taking a defensive action, the
defender balances two objectives: (i) maintain services to
its clients; and (ii), prevent a possible intrusion at lowest
cost. The optimal strategy for the defender is to monitor the
infrastructure and maintain services until the moment when
the attacker enters through the gateway, at which time the
attack must be prevented at minimal cost through defensive
actions. The challenge for the defender is to identify the
precise time for this moment.

3. Formalizing The Use Case
We model the use case as a partially observed stochastic
game. The attacker wins the game when it can intrude on
infrastructure and hide its actions from the defender. In
contrast, the defender wins the game when it manages to
prevent an intrusion. We model this as a zero-sum game,
which means that the gain of one player equals the loss of
the other player.

The attacker and the defender have different observability
in the game. The defender observes alerts from an Intrusion
Prevention System (IPS) but has no certainty about the pres-
ence of an attacker or the state of a possible intrusion. The
attacker, on the other hand, is assumed to have complete
observability. It has access to all the information that the
defender has access to, as well as the defender’s past ac-
tions. The asymmetric observability requires the defender to
find strategies that are effective against any attacker, includ-
ing attackers with inside information about its monitoring

Learning Security Strategies through Game Play and Optimal Stopping

capabilities.

We model the game as a finite and zero-sum Par-
tially Observed Stochastic Game (POSG) with one-
sided partial observability: Γ = 〈N ,S, (Ai)i∈N ,
T , (Ri)i∈N , γ, ρ1, T, (Oi)i∈N ,Z〉. It is a discrete-time
game that starts at time t = 1. In the following, we de-
scribe the components of the game, its evolution, and the
objectives of the players.

Players N . The game has two players: player 1 is the
defender and player 2 is the attacker. Hence, N = {1, 2}.

State space S. The game has three states: st = 0 if no
intrusion is occurring, st = 1 if an intrusion is ongoing, and
st = ∅ if the game has ended. Hence, S = {0, 1, ∅}. The
initial state is s1 = 0 and the initial state distribution is the
degenerate distribution ρ1(0) = 1.

Action spaces Ai. Each player i ∈ N can invoke two
actions: “stop” (S) and “continue” (C). The action spaces
are thus A1 = A2 = {S,C}. S results in a change of state
and C means that the game remains in the same state. We
encode S with 1 and C with 0.

The attacker can invoke the stop action two times: the first
time to start the intrusion and the second time to stop it.
The defender can invoke the stop action L ≥ 1 times. Each
stop of the defender can be interpreted as a defensive action
against a possible intrusion. The number of stops remaining
of the defender at time-step t is known to both the attacker
and the defender and is denoted by lt ∈ {1, . . . , L}.

At each time-step, the attacker and the defender simulta-
neously choose an action each: at = (a

(1)
t , a

(2)
t), where

a
(i)
t ∈ Ai.

Observation space O. The attacker has complete informa-
tion and knows the game state, the defender’s actions, and
the defender’s observations. The defender, however, only
sees the observations ot ∈ O, where O is a discrete set. (In
our use case, ot relates to the number of IPS alerts during
time-step t.)

Both players have perfect recall, meaning that they remem-
ber their respective play history. The history of the defender
at time-step t is h(1)

t = (ρ1, a(1)
1 , o1, . . ., a(1)

t−1, ot) and the
history of the attacker is h(2)

t = (ρ1, a(1)
1 , a(2)

1 , o1, s1,. . .,
a

(1)
t−1, a(2)

t−1, ot, st).

Belief space B. Based on its history h
(1)
t , the defender

forms a belief about st, which is expressed in the belief
state bt(st) = P[st|h(1)

t] ∈ B. Since st ∈ {0, 1} and
bt(0) = 1 − bt(1), bt is determined by bt(1). Hence, we
can model B = [0, 1].

Transition probabilities T . At each time-step t, a state
transition occurs. The probabilities of the state transitions

are defined by Tlt
(
st+1, st, (a

(1)
t , a(2)

t)
)

= Plt
[
st+1| st,

(a
(1)
t , a

(2)
t)
]
:

Tlt>1

(
0, 0, (S,C)

)
= Tlt

(
0, 0, (C,C)

)
= 1 (1)

Tlt>1

(
1, 1, (·, C)

)
= Tlt

(
1, 1, (C,C)

)
= 1− φlt (2)

Tlt>1

(
1, 0, (·, S)

)
= Tlt

(
1, 0, (C, S)

)
= 1 (3)

Tlt>1

(
∅, 1, (·, C)

)
= Tlt

(
∅, 1, (C,C)

)
= φlt (4)

T1

(
∅, ·, (S, ·)

)
= Tlt(∅, ∅, ·) = Tlt(∅, 1, (·, S)) = 1 (5)

All other state transitions have probability 0.

Eqs. 1-2 define the probabilities of the recurrent state transi-
tions 0→ 0 and 1→ 1. The game stays in state 0 with prob-
ability 1 if the attacker selects action C and lt − a(1)

t > 0.
Similarly, the game stays in state 1 with probability 1− φlt
if the attacker chooses action C and lt − a(1)

t > 0. φlt is a
parameter of the use case that defines the probability that
the intrusion is prevented, which increases with each stop
action that the defender takes.

Eq. 3 captures the transition 0→ 1, which occurs when the
attacker chooses action S and lt−a(1)

t > 0. Eqs. 4-5 define
the probabilities of the transitions to the terminal state ∅.
The terminal state is reached in three cases: (i) when lt = 1
and the defender takes the final stop action S (i.e. when
lt − a(1)

t = 0); (ii) when the intrusion is prevented with
probability φlt ; and (iii), when st = 1 and the attacker stops
(a(2)
t = 1).

A game episode starts at t = 1 and ends at t = T . The
time horizon T is a random variable that depends on both
players’ strategies and takes values in {2, 3, . . . ,∞}.

Reward functionRlt . At time-step t, the defender receives
the reward rt = Rlt(st, (a

(1)
t , a

(2)
t)) and the attacker re-

ceives the reward −rt. The reward function is parameter-
ized by the reward that the defender receives for stopping
an intrusion (Rst > 0), the defender’s cost of taking a de-
fensive action (Rcost < 0), and its loss when being intruded
(Rint < 0):

Rlt(∅, ·) = 0, Rlt
(
1, (·, S)

)
= 0 (6)

Rlt
(
0, (C, ·)

)
= 0 (7)

Rlt
(
0, (S, ·)

)
= Rcost/lt (8)

Rlt
(
1, (S,C)

)
= Rst/lt (9)

Rlt
(
1, (C,C)

)
= Rint (10)

Eq. 6 states that the reward is zero in the terminal state and
when the attacker ends an intrusion. Eq. 7 states that the
defender incurs no cost when it is not under attack and not
taking defensive actions. Eq. 8 indicates that the defender
incurs a cost when stopping if no intrusion is ongoing, which
is decreasing with the number of stops remaining lt. Eq. 9

Learning Security Strategies through Game Play and Optimal Stopping

states that the defender receives a reward that is decreasing
in lt when taking a stop action that affects an ongoing intru-
sion. Lastly, Eq. 10 indicates that the defender receives a
loss for each time-step when under intrusion.

Observation function Z . At time-step t, ot ∈ O is drawn
from a random variable O whose distribution fO depends
on the current state st. We define Z(ot, st, (a

(1)
t−1, a

(2)
t−1))=

P[ot|st, (a(1)
t−1, a

(2)
t−1)] as follows:

Z
(
ot, 0, ·

)
= fO(ot|0) (11)

Z
(
ot, 1, ·

)
= fO(ot|1) (12)

Z
(
∅, ∅, ·

)
= 1 (13)

Belief update. At time-step t, the belief state bt is updated
as follows:

bt+1(st+1) = C
∑
st∈S

∑
a
(2)
t ∈A2

∑
ot+1∈O

bt(st)π2,l(a
(2)
t |st, bt)·

Z(ot+1, st+1, (a
(1)
t , a

(2)
t))T

(
st+1, st, (a

(1)
t , a

(2)
t)
)

(14)

where C = 1/P[ot+1|a(1)
1 , π2,l, bt] is a normalizing factor

that makes bt+1 sum to 1. The initial belief is b1(0) = 1.

Player strategies πi,l. A strategy of the defender is a func-
tion π1,l ∈ Π1 : B → ∆(A1). Analogously, a strategy of
the attacker is a function π2,l ∈ Π2 : S × B → ∆(A2).
∆(Ai) denotes the set of probability distributions over Ai,
Πi denotes the strategy space of player i, and π−i,l denotes
the strategy of player j ∈ N \ {i}. For both players, a strat-
egy is dependent on l but independent of t, i.e. strategies are
stationary. If πi,l always maps to an action with probability
1, it is called pure, otherwise it is called mixed.

Objective functions Ji. The goal of the defender is to
maximize the expected discounted cumulative reward over
the time horizon T . Similarly, the goal of the attacker is
to minimize the same quantity. Therefore, the objective
functions J1 and J2 are:

J1(π1,l, π2,l) = E(π1,l,π2,l)

[
T∑
t=1

γt−1Rl(st,at)

]
(15)

J2(π1,l, π2,l) = −J1(π1,l, π2,l) (16)

where γ ∈ [0, 1) is the discount factor.

Best response strategies π̃i,l. A defender strategy π̃1,l ∈
B1(π2,l) is called a best response against π2,l ∈ Π2 if
it maximizes J1 (Eq. 17). Similarly, an attacker strategy
π̃2,l ∈ B2(π1,l) is called a best response against π1,l ∈ Π1

if it minimizes J1 (Eq. 18).

B1(π2,l) = arg max
π1,l∈Π1

J1(π1,l, π2,l) (17)

B2(π1,l) = arg min
π2,l∈Π2

J1(π1,l, π2,l) (18)

Optimal strategies π∗i,l. An optimal defender strategy π∗1,l
is a best response strategy against any attacker strategy that
minimizes J1. Similarly, an optimal attacker strategy π∗2,l is
a best response against any defender strategy that maximizes
J1. Hence, when both players follow optimal strategies,
they play best response strategies against each other:

(π∗1,l, π
∗
2,l) ∈ B1(π∗2,l)×B2(π∗1,l) (19)

This means that no player has an incentive to change its
strategy and that (π∗1,l, π

∗
2,l) is a Nash equilibrium (1951).

4. Game-Theoretic Analysis and Finding
Optimal Defender Strategies

Finding optimal strategies that satisfy Eq. 19 means finding
a Nash equilibrium for the POSG Γ. We know from game
theory that Γ has at least one mixed Nash equilibrium (von
Neumann, 1928; Nash, 1951; Horák, 2019). (A Nash equi-
librium is called mixed if one or more players follow mixed
strategies.)

The equilibria of Γ can be obtained by finding pairs of
strategies that are best responses against each other (Eq.
19). A best response for the defender is obtained by solving
a POMDP MP , and a best response for the attacker is
obtained by solving an MDPM. Since the game is zero-
sum, stationary, and γ < 1, it follows from Markov decision
theory that for any strategy pair (π1,l, π2,l), a corresponding
pair of best response strategies (π̃1,l ∈ B1(π2,l), π̃2,l ∈
B2(π1,l)) exists (Puterman, 1994; Bellman, 1957).

Analyzing best responses using optimal stopping. The
POMDP MP and the MDP M that determine the best
response strategies can be understood as optimal stopping
problems (Wald, 1947; Dynkin, 1969).

In the defender’s case, the problem is to find a stopping
strategy π∗1,l(bt)→ {S,C} that maximizes J1 (Eq. 15) and
prescribes the optimal stopping times τ∗1,1, τ

∗
1,2, . . . , τ

∗
1,L.

Similarly, the problem for the attacker is to find a stopping
strategy π∗2,l(st, bt) → {S,C} that minimizes J1 (Eq. 16)
and prescribes the optimal stopping times τ∗2,1 and τ∗2,2.

Based on (Hammar & Stadler, 2022b; Horák, 2019), we for-
mulate Theorem 4.1, which contains an existence result for
equilibria and a structural result for best response strategies
in the game.

Theorem 4.1. Given the one-sided POSG Γ in Section 3
with L ≥ 1, the following holds.

(A) Γ has a mixed Nash equilibrium. Further, Γ has a pure
Nash equilibrium when s = 0 ⇐⇒ b(1) = 0.

(B) Given any attacker strategy π2,l ∈ Π2, if the proba-
bility mass function fO|s is totally positive of order 2

Learning Security Strategies through Game Play and Optimal Stopping

(i.e., TP2 (Hammar & Stadler, 2022b)), there exist val-
ues α̃1 ≥ α̃2 ≥ . . . ≥ α̃L ∈ [0, 1] and a best response
strategy π̃1,l ∈ B1(π2,l) of the defender that satisfies:

π̃1,l(b(1)) = S ⇐⇒ b(1) ≥ α̃l, l ∈ 1, . . . , L (20)

(C) Given a defender strategy π1,l ∈ Π1, where
π1,l(S|b(1)) is non-decreasing in b(1) and
π1,l(S|1) = 1, there exist values β̃0,1, β̃1,1, . . .,
β̃0,L, β̃1,L ∈ [0, 1] and a best response strategy
π̃2,l ∈ B2(π1,l) of the attacker that satisfies:

π̃2,l(0, b(1)) = C ⇐⇒ π1,l(S|b(1)) ≥ β̃0,l (21)

π̃2,l(1, b(1)) = S ⇐⇒ π1,l(S|b(1)) ≥ β̃1,l (22)

for l ∈ 1, . . . , L.

Proof. The proof is available in the extended arXiv version
of this paper (Hammar & Stadler, 2022c). Due to space
limitation we do not include the proof here.

Theorem 4.1 tells us that Γ has a mixed Nash equilibrium.
It also tells us that, under certain assumptions, the best re-
sponse strategies have threshold properties. In the following,
we describe an efficient algorithm that takes advantage of
these properties to approximate Nash equilibria of Γ.

Finding Nash equilibria through fictitious self-play.
Computing Nash equilibria for a POSG is generally in-
tractable (Horák, 2019). However, approximate solutions
can be obtained through iterative approximation methods.
One such method is fictitious self-play, where both players
start from random strategies and continuously update their
strategies based on the outcomes of played game episodes
(Brown, 1951).

Fictitious self-play evolves through a sequence of iteration
steps, which is illustrated in Fig. 3. An iteration step in-
cludes three procedures. First, player 1 learns a best re-
sponse strategy against player 2’s current strategy. The roles
are then reversed and player 2 learns a best response strat-
egy against player 1’s current strategy. Lastly, the iteration
step is completed by having each player adopt a new strat-
egy, which is determined by the empirical distribution over
its past best response strategies. The sequence of iteration
steps continues until the strategies of both players have suf-
ficiently converged to a Nash equilibrium (Brown, 1951).

Our self-play algorithm: T-FP. We present a fictitious
self-play algorithm, which we call T-FP, that exploits the
statements in Theorem 4.1 to efficiently approximate Nash
equilibria of Γ.

T-FP parameterizes the best response strategies π̃1,l,θ̃(1) ∈
B1(π2,l) and π̃2,l,θ̃(2) ∈ B2(π1,l) by threshold vectors. The

π̃2,l ∈ B2(π1,l)

π2,l

π1,l

π̃1,l ∈ B1(π2,l)

π̃′2,l ∈ B2(π′1,l)

π′2,l

π′1,l

π̃′1,l ∈ B1(π′2,l)

. . .

π∗2,l ∈ B2(π∗1,l)

π∗1,l ∈ B1(π∗2,l)

Figure 3. The fictitious self-play process; in every iteration each
player learns a best response strategy π̃i,l ∈ Bi(π−i,l) and updates
its strategy based on the empirical distribution of its past best
responses; the horizontal arrows indicate the iterations of self-play
and the vertical arrows indicate the learning of best responses; if the
process is convergent, it reaches a Nash equilibrium (π∗

1,l, π
∗
2,l).

defender’s best response strategy is parameterized with the
vector θ̃(1) ∈ RL (Eq. 24). Similarly, the attacker’s best
response strategy is parameterized with the vector θ̃(2) ∈
R2L (Eq. 25).

ϕ(a, b) =

(
1 +

(
b(1− σ(a))

σ(a)(1− b)

)−20
)−1

(23)

π̃1,l,θ̃(1)

(
S|b(1)

)
= ϕ

(
θ̃

(1)
l , b(1)

)
(24)

π̃2,l,θ̃(2)

(
S|b(1), s

)
= ϕ

(
θ̃

(2)
sL+l, π1,l(S|b(1))

)
(25)

σ(·) is the sigmoid function, σ(θ̃
(1)
1), σ(θ̃

(1)
2), . . ., σ(θ̃

(1)
L) ∈

[0, 1] are the L thresholds of the defender (see Theorem
4.1.B), and σ(θ̃

(2)
1), σ(θ̃

(2)
2), . . ., σ(θ̃

(2)
2L) ∈ [0, 1] are the 2L

thresholds of the attacker (see Theorem 4.1.C).

Using this parameterization, T-FP learns best response
strategies in each step of the self-play process by iteratively
updating θ̃(1) and θ̃(2) through stochastic approximation.
To update the threshold vectors, T-FP simulates Γ, which
allows to evaluate the objective functions J1(π̃1,l,θ̃(1) , π2,l)
(Eq. 15) and J2(π1,l, π̃2,l,θ̃(2)) (Eq. 16). The obtained val-
ues of J1 and J2 are then used to estimate the gradients
∇θ̃(1)J1 and ∇θ̃(2)J2. Next, the estimated gradients are
used to update θ̃(1) and θ̃(2) through stochastic gradient
ascent. This procedure of estimating gradients and updat-
ing θ̃(1) and θ̃(2) continues until π̃1,l,θ̃(1) and π̃2,l,θ̃(2) have
sufficiently converged.

The pseudocode of T-FP is listed in the extended arXiv
version of this paper (Hammar & Stadler, 2022c). Due to
space limitation we do not include it here.

Learning Security Strategies through Game Play and Optimal Stopping

5. Emulating the Target Infrastructure to
Instantiate the Simulation

To simulate a game episode we must know the observation
distribution conditioned on the system state (see Eqs. 11-13).
We estimate this distribution using measurements from the
emulation system shown in Fig. 2. Moreover, to evaluate the
performance of strategies learned in the simulation system,
we run game episodes in the emulation system by having the
attacker and the defender take actions at the times prescribed
by the learned strategies.

Emulating the target infrastructure. The emulation sys-
tem executes on a cluster of machines that runs a virtualiza-
tion layer provided by Docker containers and virtual links.
The system implements network isolation and traffic shap-
ing on the containers using network namespaces and the
NetEm module in the Linux kernel. Resource constraints
on the containers, e.g. CPU and memory constraints, are
enforced using cgroups.

The network topology of the emulated infrastructure is given
in Fig. 1 and the configuration is given in (Hammar &
Stadler, 2022c). The system emulates the clients, the at-
tacker, the defender, network connectivity, and 31 physi-
cal components of the target infrastructure (e.g application
servers and the gateway). The software functions replicate
important components of the target infrastructure, such as,
web servers, databases, and the Snort IPS, which is deployed
using Snort’s community ruleset v2.9.17.1.

We emulate connections between servers as full-duplex
loss less connections with capacity 1 Gbit/s in both direc-
tions. We emulate external connections between the gateway
and the client population as full-duplex connections of 100
Mbit/s capacity and 0.1% packet loss with random bursts of
1% packet loss. (These numbers are drawn from empirical
studies on enterprise and wide area networks (Hammar &
Stadler, 2022c).)

Emulating the client population. The client population is
emulated by processes that run inside Docker containers and
interact with the application servers through the gateway.
The clients select functions uniformly at random from a
fixed set, which is listed in (Hammar & Stadler, 2022c). We
emulate client arrivals using a stationary Poisson process
with parameter λ = 20 and exponentially distributed service
times with parameter µ = 1

4 . The duration of a time-step in
the emulation is 30 seconds.

Emulating defender and attacker actions. The attacker
and the defender observe the infrastructure continuously and
take actions at discrete time-steps t = 1, 2, . . . , T . During
each step, the defender and the attacker can perform one
action each.

The defender executes either a continue action or a stop

Stop index Action

1 Revoke user certificates
2 Blacklist IPs
3− 6 Drop traffic that generates IPS alerts of priority 1− 4
7 Block gateway

Table 1. Defender stop actions in the emulation.

Type Actions

Reconnaissance TCP-SYN scan, UDP port scan,
TCP Null scan, TCP Xmas scan,
TCP FIN scan, ping-scan,
TCP connection scan, “Vulscan” scanner

Brute-force attack Telnet, SSH, FTP, Cassandra,IRC,
MongoDB, MySQL, SMTP, Postgres

Exploit CVE-2017-7494, CVE-2015-3306,
CVE-2010-0426, CVE-2015-5602,
CVE-2014-6271, CVE-2016-10033
CVE-2015-1427, SQL Injection

Table 2. Attacker commands to emulate intrusions.

action. Only the stop action affects the progression of the
emulation. We have implemented L = 7 stop actions, which
are listed in Table 1. The first stop action revokes user certifi-
cates and recovers user accounts thought to be compromised
by the attacker. The second stop action updates the firewall
configuration of the gateway to drop traffic from IP ad-
dresses that have been flagged by the IPS. Stop actions 3−6
update the configuration of the IPS to drop traffic that gen-
erates alerts of priorities 1− 4. The final stop action blocks
all incoming traffic. (Contrary to Snort’s terminology, we
define 4 to be the highest priority.)

Like the defender, the attacker executes either a stop action
or a continue action during each time-step. The attacker
can take two stop actions. The first determines when the
intrusion starts and the second determines when it ends (see
Section 3). A continue action in state s = 0 has no affect
on the emulation, but a continue action in state s = 1 has.
When the attacker takes a stop action in state s = 0 or a
continue action in state s = 1, an intrusion command is
executed. We have implemented 25 such commands, which
are listed in Table 2. During each step of an intrusion, the
attacker selects a command uniformly at random from the
list in Table 2.

Estimating the IPS alert distribution. At the end of every
time-step, the emulation system collects the metric ot, which
contains the number of IPS alerts that occurred during the
time-step, weighted by priority. For the evaluation reported
in this paper we collect measurements from 23000 time-
steps of 30 seconds each.

Using these measurements, we fit a Gaussian mixture distri-
bution f̂O as an estimate of fO in the target infrastructure

Learning Security Strategies through Game Play and Optimal Stopping

f̂
O

(o
t
|0

)
Probability distribution of # IPS alerts weighted by priority ot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

f̂
O

(o
t
|1

)

Fitted model Distribution st = 0 Distribution st = 1

Figure 4. Empirical distributions of ot when no intrusion occurs
(st = 0) and during intrusion (st = 1); the black lines show the
fitted Gaussian mixture models.

(Eqs. 11-12). For each state s, we obtain the conditional
distribution f̂O|s through expectation-maximization.

Fig. 4 shows the empirical distributions and the fitted model
over the discrete observation space O = {1, 2, . . . , 9000}.
f̂O|0 and f̂O|1 are Gaussian mixtures with two and three
components, respectively. Both mixtures have most prob-
ability mass within the range 0− 1000. f̂O|1 also has sub-
stantial probability mass at larger values.

The stochastic matrix with the rows f̂O|0 and f̂O|1 has about
72× 106 minors, out of which virtually all are non-negative.
This suggests to us that the TP2 assumption in Theorem 4.1
can be made.

6. Learning Nash Equilibrium Strategies for
the Target Infrastructure

Our approach to finding effective defender strategies in-
cludes: (1) extensive simulation of game episodes in the
simulation system to learn Nash equilibrium strategies; and
(2) evaluation of the learned strategies on the emulation
system (see Fig. 2). This section describes our evaluation
results for the intrusion prevention use case.

We run T-FP for 500 iterations to estimate a Nash equi-
librium using the iterative method described in Section 4.
At the end of each iteration step, we evaluate the current
strategy pair (π1,l, π2,l) by running 500 evaluation episodes
in the simulation system and 5 evaluation episodes in the
emulation system. This allows us to produce learning curves
for different performance metrics (see Fig. 5). To estimate
the convergence of the sequence of strategy pairs to a Nash
equilibrium, we use the exploitability metric. The closer the
exploitability is to zero, the closer the strategy pair is to a
Nash equilibrium.

The 500 training iterations constitute one training run. We
run four training runs with different random seeds. A single
training run takes about 5 hours of processing time on a

P100 GPU. In addition, it takes around 12 hours to evaluate
the strategies on the emulation system.

The hyperparameters, links to code, and the configurations
of the environments for running simulations and emulations
are available at (Hammar & Stadler, 2022c).

Defender baseline strategies. We compare the learned
defender strategies with three baselines. The first baseline
prescribes the stop action whenever an IPS alert occurs,
i.e., whenever ot ≥ 1. The second baseline follows the
Snort IPS’s internal recommendation system and takes a
stop action whenever 100 IP packets have been dropped
by the Snort IPS. The third baseline assumes knowledge
of the exact intrusion time and performs all stop actions at
subsequent time-steps.

Baseline algorithms. We compare the performance of T-
FP with two baseline algorithms: Neural Fictitious Self-
Play (NFSP) (Heinrich & Silver, 2016) and Heuristic Search
Value Iteration (HSVI) for one-sided POSGs (Horák et al.,
2017). NFSP is a state-of-the-art deep reinforcement learn-
ing algorithm for imperfect-information games. Similar
to T-FP, NFSP is a fictitious self-play algorithm. How-
ever, contrary to T-FP, NFSP does not exploit the threshold
structures expressed in Theorem 4.1 and as a result is more
complex. HSVI is a state-of-the-art dynamic programming
algorithm for one-sided POSGs.

Discussion of the evaluation results. Fig. 5 shows the
learning curves of the strategies obtained during the T-FP
self-play process. The red curve represents the results from
the simulation system and the blue curves show the results
from the emulation system. The purple and orange curves
give the performance of the Snort IPS baseline and the base-
line strategy that mandates a stop action whenever an IPS
alert occurs, respectively. The dashed black curve gives the
performance of the baseline strategy that assumes knowl-
edge of the exact intrusion time.

The results in Fig. 5 lead us to the following conclusions.
First, the fact that all learning curves seem to converge
suggests to us that the learned strategies have converged
as well. Second, we observe that the exploitability of the
learned strategies converges to small values (left plot of Fig.
5). This indicates that the learned strategies approximate
a Nash equilibrium both in the simulation system and in
the emulation system. Third, we see from the middle plot
in Fig. 5 that both baseline strategies show decreasing per-
formance as the attacker updates its strategy. In contrast,
the learned defender strategy improves its performance over
time. This shows the benefit of using a game-theoretic ap-
proach, whereby the defender’s strategy is optimized against
a dynamic attacker.

Fig. 6 allows a comparison between T-FP and the two
baseline algorithms (NFSP and HSVI) as they execute in

Learning Security Strategies through Game Play and Optimal Stopping

0 20 40 60 80 100
training iterations

0

1

2

3

Exploitability

0 20 40 60 80 100
training iterations

−5.0

−2.5

0.0

2.5

5.0
Defender reward per episode

0 20 40 60 80 100
training iterations

0

1

2

3

Intrusion length

(π1,l, π2,l) emulation (π1,l, π2,l) simulation Snort IPS ot ≥ 1 upper bound

Figure 5. Learning curves from the self-play process with T-FP; the red curve shows simulation results and the blue curves show emulation
results; the purple, orange, and black curves relate to baseline strategies; the figures show different performance metrics: exploitability,
episodic reward, and the length of intrusion; the curves indicate the mean and the 95% confidence interval over four training runs with
different random seeds.

0 10 20 30 40 50 60
running time (min)

0

2

4

Exploitability

0 10 20 30 40 50 60
running time (min)

0

250

500

750

Approximation error (gap)

55.0 57.5 60.0

7.5

10.0

T-FP NFSP HSVI

Figure 6. Comparison between T-FP and two baseline algorithms:
NFSP and HSVI; all curves show simulation results; the red curve
relates to T-FP; the blue curve to NFSP; the purple curve to HSVI;
the left plot shows the exploitability metric and the right plot
shows the HSVI approximation error; the curves depicting T-FP
and NFSP show the mean and the 95% confidence interval over
four training runs with different random seeds.

the simulation system. Since T-FP and NFSP both imple-
ment fictitious self-play, they allow for a direct comparison.
We observe that T-FP converges much faster to a Nash
equilibrium than NFSP. We expect the fast convergence of
T-FP due to its design to exploit structural properties of the
stopping game.

The right plot of Fig. 6 shows that HSVI reaches an HSVI
approximation error < 5 within an hour. We expected
slower convergence due to findings in (Horák, 2019). A
direct comparison between T-FP and HSVI is not possible
due to their different nature.

Additional results can be found in (Hammar & Stadler,
2022c).

7. Related Work
Related works on finding security strategies through rein-
forcement learning include the simulation-based studies in
(Ridley, 2018; Blum, 2021; Hammar & Stadler, 2020; Tran
et al., 2021; Schwartz et al., 2020; Dhir et al., 2021), the
emulation-based studies in (Akbari et al., 2020; Liu et al.,

2018; Aydeger et al., 2021; Hammar & Stadler, 2022b), and
the papers (Standen et al.; Molina-Markham et al., 2021;
Hammar & Stadler, 2022d; Li et al., 2021), which describe
ongoing efforts in building emulation platforms for rein-
forcement learning research in the cyber domain.

Game-theoretic formulations based on optimal stopping
theory can be found in prior research on Dynkin games
(Dynkin, 1969) and a similar game model to ours is FlipIt
(van Dijk et al., 2013).

A review of the related work is available in the extended
arXiv version of this paper (Hammar & Stadler, 2022c).

8. Conclusion and Future Work
We formulate the interaction between an attacker and a de-
fender in an intrusion prevention use case as an optimal stop-
ping game. The theory of optimal stopping provides us with
insight about optimal strategies for attackers and defenders.
Based on this knowledge, we develop a fictitious self-play
algorithm, T-FP, which allows us to compute near opti-
mal strategies in an efficient way. This approach provides
us with a complete formal framework for analyzing and
solving the intrusion prevention use case. The simulation
results from executions of T-FP show that the exploitabil-
ity of the computed strategies converges, which suggests
that the strategies converge to a Nash equilibrium and thus
to an optimum in the game-theoretic sense. The results
also demonstrate that T-FP converges faster than a state-of-
the-art fictitious self-play algorithm by taking advantage of
structural properties of optimal stopping strategies.

To assess the computed strategies in a real environment, we
evaluate them in a system that emulates our target infrastruc-
ture. The results show that the strategies achieve almost the
same performance in the emulated infrastructure as in the
simulation. This gives us a high confidence of the obtained
strategies’ performance in the target infrastructure.

We plan to extend this work by combining our model for
when to take actions with a model for action selection.

Learning Security Strategies through Game Play and Optimal Stopping

References
Akbari, I., Tahoun, E., Salahuddin, M. A., Limam, N., and

Boutaba, R. Atmos: Autonomous threat mitigation in
sdn using reinforcement learning. In NOMS IEEE/IFIP
Network Operations and Management Symposium, pp.
1–9, 2020. doi: 10.1109/NOMS47738.2020.9110426.

Aydeger, A., Manshaei, M. H., Rahman, M. A., and Akkaya,
K. Strategic defense against stealthy link flooding at-
tacks: A signaling game approach. IEEE Transactions on
Network Science and Engineering, 8(1):751–764, 2021.

Bellman, R. A markovian decision process. Journal of
Mathematics and Mechanics, 6(5):679–684, 1957.

Blum, W. Gamifying machine learning for stronger security
and ai models, 2021.

Brown, G. W. Iterative solution of games by fictitious play,
1951. Activity analysis of production and allocation.

Dhir, N. et al. Prospective artificial intelligence approaches
for active cyber defence. 2021.

Dynkin, E. A game-theoretic version of an optimal stopping
problem. Dokl. Akad. Nauk SSSR, 385:16–19, 1969.

Fuchsberger, A. Intrusion detection systems and intrusion
prevention systems. Inf. Secur. Tech. Rep., 10(3), 2005.

Hammar, K. and Stadler, R. Finding effective security strate-
gies through reinforcement learning and Self-Play. In
International Conference on Network and Service Man-
agement (CNSM 2020), Izmir, Turkey, 2020.

Hammar, K. and Stadler, R. Learning intrusion prevention
policies through optimal stopping. In International Con-
ference on Network and Service Management (CNSM
2021), Izmir, Turkey, 2021.

Hammar, K. and Stadler, R. A software framework for build-
ing self-learning security systems, 2022a. URL https:
//www.youtube.com/watch?v=18P7MjPKNDg.
https://www.youtube.com/watch?v=
18P7MjPKNDg.

Hammar, K. and Stadler, R. Intrusion prevention through
optimal stopping. IEEE Transactions on Network and
Service Management, pp. 1–1, 2022b. doi: 10.1109/
TNSM.2022.3176781.

Hammar, K. and Stadler, R. Learning security strategies
through game play and optimal stopping, 2022c. URL
https://arxiv.org/abs/2205.14694.

Hammar, K. and Stadler, R. A system for interactive
examination of learned security policies. In NOMS
IEEE/IFIP Network Operations and Management Sympo-
sium, 2022d.

Heinrich, J. and Silver, D. Deep reinforcement learning
from self-play in imperfect-information games. CoRR,
abs/1603.01121, 2016.

Horák, K. Scalable Algorithms for Solving Stochastic
Games with Limited Partial Observability. PhD thesis,
2019.

Horák, K., Bošanský, B., and Pěchouček, M. Heuristic
search value iteration for one-sided partially observable
stochastic games. Proceedings of the AAAI Conference
on Artificial Intelligence, Feb. 2017.

Li, L., Fayad, R., and Taylor, A. Cygil: A cyber gym
for training autonomous agents over emulated network
systems. CoRR, abs/2109.03331, 2021.

Liu, Y. et al. Deep reinforcement learning based smart
mitigation of ddos flooding in software-defined networks.
In 2018 IEEE 23rd International Workshop on Computer
Aided Modeling and Design of Communication Links and
Networks, pp. 1–6, 2018.

Molina-Markham, A., Miniter, C., Powell, B., and Ridley,
A. Network environment design for autonomous cyberde-
fense. 2021.

Nash, J. F. Non-cooperative games. Annals of Mathematics,
54:286–295, 1951.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons,
Inc., USA, 1st edition, 1994. ISBN 0471619779.

Ridley, A. Machine learning for autonomous cyber defense,
2018. The Next Wave, Vol 22, No.1 2018.

Schwartz, J., Kurniawati, H., and El-Mahassni, E. Pomdp +
information-decay: Incorporating defender’s behaviour
in autonomous penetration testing. Proceedings of the
International Conference on Automated Planning and
Scheduling, 30:235–243, Jun. 2020.

Standen, M., Lucas, M., Bowman, D., Richer, T. J., Kim, J.,
and Marriott, D. Cyborg: A gym for the development of
autonomous cyber agents.

Tran, K., Akella, A., Standen, M., Kim, J., Bowman, D.,
Richer, T., and Lin, C.-T. Deep hierarchical reinforcement
agents for automated penetration testing, 2021.

van Dijk, M., Juels, A., Oprea, A., and Rivest, R. L. Flipit:
The game of “stealthy takeover”. Journal of Cryptology,
(4), Oct 2013. ISSN 1432-1378.

von Neumann, J. Zur Theorie der Gesellschaftsspiele. (Ger-
man) [On the theory of games of strategy]. 100:295–320,
1928. ISSN 0025-5831 (print), 1432-1807 (electronic).

Wald, A. Sequential Analysis. Wiley and Sons, 1947.

https://www.youtube.com/watch?v=18P7MjPKNDg
https://www.youtube.com/watch?v=18P7MjPKNDg
https://www.youtube.com/watch?v=18P7MjPKNDg
https://www.youtube.com/watch?v=18P7MjPKNDg
https://arxiv.org/abs/2205.14694

