
Homework 1: Finding Similar Items: Textually Similar
Documents

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 7, 2017

1 Solution
The implementation is done in pure Scala without any big data processing framework. The func-
tionality is split into different class files: Shingling.scala, MinHashing.scala, CompareSets.scala,
CompareSignatures.scala, LSH.scala, Dataset.scala and Main.scala. The first four classes
have the functionality as described in the problem description. Dataset is a class with function-
ality for reading the dataset used for evaluation 1. Main is a class for orchestrating the different
steps of the pipeline: Shinglinng → MinHashing → LSH → Filter(CompareSignatures) →
Evaluation.

2 How to run
Clone this repository and navigate to similar_items project. Then use:

sbt compile //compile
sbt test //test
sbt run //run
sbt assembly //generate fat jar

3 Evaluation and results

Figure 1: Memory analysis for different stages in comparing the documents

1https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups
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Example output (t=0.8, b=10, r=10, n=100)

[info] Running kth.se.id2222.Main
Shingles size: 11624856 bytes
Size after minhashing: 153112 bytes
Number of candidates pre LSH is approx: 10816.0
Number of candidates after LSH: 5
Size after LSH: 15656 bytes
Similar items: 4
Similar pair:
src/resources/mini_newsgroups/alt.atheism/54485_copy,
src/resources/mini_newsgroups/alt.atheism/54485
similarity: 0.99

Similar pair:
src/resources/mini_newsgroups/alt.atheism/51131,
src/resources/mini_newsgroups/alt.atheism/51131copy
similarity: 0.96

Similar pair:
src/resources/mini_newsgroups/alt.atheism/54244,
src/resources/mini_newsgroups/alt.atheism/54244_copy
similarity: 0.99

Similar pair:
src/resources/mini_newsgroups/alt.atheism/53653_copy,
src/resources/mini_newsgroups/alt.atheism/53653
similarity: 0.98

Time to compute similar items: 7.256831409 seconds, number of similar items found: 4
[success] Total time: 8 s, completed 2017-nov-07 10:41:05
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Discovery of Frequent Itemsets and Association Rules

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 16, 2017

1 Solution
We implemented the solution in pure scala without any big data processing framework. We used
the T10I4D100K.dat dataset uploaded on canvas. The source code is split into four classes,
Apriori.scala that implementes the Apriori algorithm; AssocRules.scala that mines associ-
ation rules from counted itemsets; DataUtils.scala that reads the data into a item-basket data
model and Main.scala that orchestrates the pipeline and prints the results.

2 How to run
Clone this repository and navigate to frequent_itemsets project. Then use:

sbt compile //compile
sbt test //test
sbt run //run
sbt assembly //generate fat jar

3 Evaluation and results
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Figure 1: Analysis of number of counts made at each stage (log scale). Frequent itemsets of length
3 was 1, and counted itemsets of length 4 was thus 0. In-between each iteration we also filter
the baskets (we hoped to reduce the complexity of the double-loop to count itemsets which has
complexity O(b · f · k) where b is the number of baskets, f is the number of frequent sets and k is
the size of each set (O(k) is the complexity to check if the set is subset of basket).
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Example output (s=1000, c=0.5, k=3)

Counting all singletons for 100000 baskets

Total unique items to count: 870

Number of frequent singletons 375

Filtering out baskets with no frequent itemsets..
Processing frequent items for 2-sets, approximately 70312.5 sets to check and 99933 baskets
Filtering out baskets with no frequent itemsets..
Finding association rules for 2-sets
Processing frequent items for 3-sets, approximately 40.5 sets to check and 7087 baskets
Filtering out baskets with no frequent itemsets..
Finding association rules for 3-sets
Processing frequent items for 4-sets, approximately 0.5 sets to check and 1035 baskets
Filtering out baskets with no frequent itemsets..
Finding association rules for 4-sets
Done. Evaluating

Number Frequent Items of length 1: 375

Number Frequent Items of length 2: 9
Number of association rules for itemsets length: 2: 3

Association Rule: AssociationRule(Set(Item(227)),Item(390)),
confidence: 0.577007700770077,
interest: 0.550157700770077
Association Rule: AssociationRule(Set(Item(704)),Item(825)),
confidence: 0.6142697881828316,
interest: 0.5834197881828316
Association Rule: AssociationRule(Set(Item(704)),Item(39)),
confidence: 0.617056856187291,
interest: 0.574476856187291

Number Frequent Items of length 3: 1
Number of association rules for itemsets length: 3: 3

Association Rule: AssociationRule(Set(Item(825), Item(704)),Item(39)),
confidence: 0.9392014519056261,
interest: 0.8966214519056261
Association Rule: AssociationRule(Set(Item(39), Item(704)),Item(825)),
confidence: 0.9349593495934959,
interest: 0.9041093495934959
Association Rule: AssociationRule(Set(Item(39), Item(825)),Item(704)),
confidence: 0.8719460825610783,
interest: 0.8540060825610784

Number Frequent Items of length 4: 0
Number of association rules for itemsets length: 4: 0

[success] Total time: 189 s, completed 2017-nov-16 11:09:11
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Homework 3: Mining Data Streams

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

November 17, 2017

1 Solution
We implemented the TRIÈST-IMPR algorithm1 for estimating triangle counts on the Euroroad
graph dataset 2. The graph is undirected, nodes represent cities and an edge between two nodes
denotes that they are connected by an E-road. The algorithm estimates both global and local
triangle counts. The dataset is bounded but we process it in a streaming fashion by reading edge
by edge and applying the reservoir sampling.

2 Questions
1. What were the challenges you have faced when implementing the algorithm?

One problem that we encountered was about choosing the right streaming graph processing
platform. To the best of our knowledge Apache Flink does not support streaming graph
processing. We tried to use plain Apache Flink and stream every event as an edge in our
graph but it was not clear to us how our TRIÈST-IMPR counters were updated since
Flink uses updated counters in parallel way. Flink streaming typically considers the data as
unbounded and if using this approach we would generate estimates per window rather than
a global estimate of the triangle count. Since our dataset in this were bounded it would
over-complicate things to use Flink so we simply streamed the edges ourself in a non-parallel
fashion.

2. Can the algorithm be easily parallelized? If yes, how? If not, why? Explain.

Yes it can be parallelized, different streaming nodes can run the TRIÈST-IMPR algorithm in
parallel and maintain local estimates. When querying the stream or materializing the results,
the local estimates have to be merged to create the final estimate. This can for example be
done in Flink-Streaming, where the stream of edges can be split uniformly among a set of
nodes and each node updates its local sample and estimates.

3. Does the algorithm work for unbounded graph streams? Explain.

Yes, since the algorithm uses reservoir sampling it is meant to be used for unbounded graph
streams. The difference if the stream of edges is unbounded is that the mindset have to
be shifted. With a unbounded stream we cannot wait until all edges have been received
to materialize the estimates but rather some form of windowing strategy should be applied
to construct rolling estimates for given time periods. What notion of time to use depends
on the characteristics of the stream, for instance if the edges are time-stamped we could
use event-time, otherwise we could use processing-time. Data-driven windows are also a
possibility.

4. Does the algorithm support edge deletions? If not, what modification would it need? Explain.

TRIÈST-IMPR does not support edge deletions. Our stream for this lab did not contain
any edge deletions so we did not implement the edge deletion part. To extend the algorithm
for edge deletion, two counters, di and do should be maintained to keep track of how many
times edges have been removed versus in the stream. This is necessary since the stream

1http://www.kdd.org/kdd2016/papers/files/rfp0465-de-stefaniA.pdf
2http://konect.uni-koblenz.de/networks/subelj_euroroad
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might arrive unordered. The reservoir should only keep those edges that have been inserted
more times than deleted. Effectively the counters works like a sort of tombstone.

3 How to run
Clone this repository and navigate to mining_data_streams project. Then use:

sbt compile //compile
sbt test //test
sbt run //run
sbt assembly //generate fat jar

4 Evaluation and results

Number of Edges in a Sample, M Estimated Number of Triangles Actual Number of Triangles
350 20 32
750 28 32
1000 30 32
1100 32 32
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Figure 1: Estimate accuracy as sample size increases, when sample size is 1100 the estimate is
correct (32).

The number of total edges in the graph we used is 1417, total number of vertices is 1,174
and average degree is ≈ 2.4. As we increase number of edges in the sample the precision of our
implementation gets better. This is based on the second implementation of the TRIÈST-IMPR
algorithm. The intuition behind this is that the algorithm was meant to be use at the very large
graphs (number of edges order of 109) and precision gets better if number of edges in the reservoir
increases. As we saw in the actual paper, in order to estimate number of triangles for the Twitter
network graph (contains billions of edges), the authors choose very high M , M = 106.
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ID2222  Data Mining

Homework 4: Graph Spectra
Graph 1

Kim Hammar 

KTH Royal Institute of Technology

Konstantin Sozinov

KTH Royal Institute of Technology

Graph Import

In[65]:= SetDirectoryNotebookDirectory[];

edgeList = Import"example1.csv","Data";

graph = GraphDirectedEdge@@@ edgeList,VertexLabels→"Name";
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General Graph Properties

Edge Count

In[68]:= EdgeCountgraph;

2196

Vertex Count

In[69]:= VertexCountgraph;

241
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Degree Distribution

In[70]:= HistogramVertexDegreegraph,{1},"Probability",AxesLabel→"degree","probability";

ListLogLogPlotGroupByVertexDegreegraph, Count, AxesLabel→"count","degree";
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Log-Log plot over degree distribution to do a rough test for powerlaw. Since the distri-

bution is not linear it is probably not a powerlaw.
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Regular Histogram plot over degree distribution.

Global Clustering Coefficient
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In[72]:= GlobalClusteringCoefficientgraph;

1008

4013

Graph Communities

Communities Count

In[73]:= LengthFindGraphCommunitiesgraph;

5

Communities Plot

In[74]:= CommunityGraphPlotgraph;
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Graph Spectra
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Graph Spectra

In[75]:= A = AdjacencyMatrixgraph;

eigenVals,eigenVecs =Eigensystem[N[A]];

Node Centralities

PageRank Centrality

In[77]:= MaxPageRankCentralNode = VertexListgraphPositionPageRankCentralitygraph,

MaxPageRankCentralitygraph[[1]];

HighlightGraphgraph, MaxPageRankCentralNode;

{127}
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Degree Centrality
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In[79]:= MaxDegreeCentralNode = VertexListgraphPositionDegreeCentralitygraph,

MaxDegreeCentralitygraph[[1]];

HighlightGraphgraph, MaxDegreeCentralNode;

{127}
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Closeness Centrality

In[81]:= MaxClosenessCentralityNode = VertexListgraphPositionClosenessCentralitygraph,

MaxClosenessCentralitygraph[[1]];

HighlightGraphgraph, MaxClosenessCentralityNode;

{127}
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Betweenness Centrality

In[83]:= MaxBetweenessCentralityNode = VertexListgraphPositionBetweennessCentralitygraph,

MaxBetweennessCentralitygraph[[1]];

HighlightGraphgraph, MaxBetweenessCentralityNode;

{15}
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EigenVector Centrality

In[85]:= MaxEigenVectorCentralityNode = VertexListgraphPositionEigenvectorCentralitygraph

MaxEigenvectorCentralitygraph[[1]];

HighlightGraphgraph, MaxEigenVectorCentralityNode;

{15}
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Clustering Coefficient

In[87]:= MaxClusterNode = VertexListgraphPositionLocalClusteringCoefficientgraph,

MaxLocalClusteringCoefficientgraph[[1]];

HighlightGraphgraph, MaxClusterNode;

{95}
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Adjacency Matrix Heatmap, Non-Normalized Laplacian (Kirchoff), Affinity Matrix

Plotting the heatmap of the adjacency matrix is a common way to visualize a network, it is especially effective when the 
node partitons are ordered based on node-ids. In our case the partitions are perfectly ordered sequentially on the node ids 
so the heatmap gives a good indication of the number of clusters.

There exists multiple versions of the Laplacian matrix with small modifications, the Kirchoff matrix is one of them. The 
affinity matrix is computed as the Jordan Decomposition of the Adjaceny matrix. There are many spectrums that are useful 
for graph analysis, including the spectrum of the adjacency matrix, the transition matrix and the Laplacian matrix. However, 
the Laplacian matrix is the most useful for reasoning about the connectivity of the graph as well as its clustering.

In[89]:= MatrixPlot[A];

kirchoffLaplacianMatrix = KirchhoffMatrixgraph;

MatrixPlotkirchoffLaplacianMatrix;

affinityMatrix, s = JordanDecomposition[N[Transpose[A]]];

MatrixPlotaffinityMatrix;
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Adjacency Matrix plot 
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KirchoffLaplacian Matrix (not normalized)
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Affinity Matrix Plot

Degree Matrix, Simple Laplacian

The Degree Matrix D is a diagonal matrix with the degree of each node i on the diagonal (i,i). Here I also compute the simple 
Laplacian matrix which is L = D - A.

In[94]:= {n,n} = Dimensions[A];

DegreeMatrix = ConstantArray[0, {n,n}];

Fori = 1, i <= n, i++, DegreeMatrixi,i = TotalAi;

MatrixPlotDegreeMatrix;

simpleLaplacian = DegreeMatrix - A;

MatrixPlotsimpleLaplacian;
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Degree Matrix Plot
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Simple Laplacian Matrix Plot
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EigenGap of Simple Laplacian and Fiedler Vector

In the Laplacian we know that λ1 = 0 with a corresponding eigenvector v1 = [1, ..., 1]. This follows from the fact that the rows

and the columns of the Laplacian sum up to 0 (each row contains number of -1 as number of neighbors plus one entry on the

row which is the degree of the node). Further more we can tell by analyzing the higher-order eigenvalues how many connected

components the graph has and whether it is a good expander or not. In our case  λ1 = λ2 = λ3 = λ4 = 0 which means that the

graph has 4 connected components.  We also know from spectral  graph theory that λn ≤ 2which is  in concordance with our

results below. Furthermore, by looking at the eigen-gap between λ4and λ5we can tell whether it is close or not that there is a fifth

disconnected component, and we can see that the fifth components seems to be quite well connected since the eigen-gap is

quite large.

Finally, the eigenvector associated with λ2, also know as the “Fiedler Vector”,  can give a bi-partition of the graph. The Fiedler

does not indicate the k-clusters but it can indicate the optimal 2-clusters (and if applied recursively it can even find k clusters,

but typically to exploit higher order eigenvectors is a better approach).

In[179]:= smallestEigenVals, smallestEigenVecs = EigensystemNsimpleLaplacian, -10;

ListPlotReverseChopsmallestEigenVals, AxesLabel→"ith smallest eigenvalue","value"

fiedlerVector = smallestEigenVecs[[-2]];

ListLinePlotSortfiedlerVector, AxesLabel→"node","value in fiedler vector";

2 4 6 8 10
ith smallest eigenvalue

0.5

1.0

1.5

value

We can see that there is a gap between the 4th smallest eigenvalue and the 5th small-

est of the simple Laplacian. This indicates that there are 4 clusters.
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Sorted Fiedler Vector plot, gives a near optimal 2-way partitioning by assigning nodes 

to partitions based on their index in the Fiedler vector and the sign of the value in the 

vector.

Ng, Jordan, & Weiss Laplacian

As mentioned, there are many variants of the laplacian matrix used in different contexts, they all have the same basic characteris-

tics and differ  only slightly.  In the code snippet below the Laplacian of  the Ng,  Jordan & Weiss paper is  computed as L =
D-1/2 AD-1/2

In[104]:= k = 4;

{n,n} = Dimensions[A];

njwLaplacian = MatrixPowerDegreeMatrix,-(1/2).A.MatrixPowerDegreeMatrix, -(1/2);

MatrixPlotnjwLaplacian;
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Ng, Jordan, & Weiss Laplacian

Ng, Jordan, & Weiss Spectral Clustering

Here the bulk of the algorithm in the paper is implemented. 

1. Decide k, we chose k = 4 since this was obvious from the preprocessing, e.g there are 4 connected components for instance.

2. The eigendecomposition of the Laplacian is computed

3. X is formed as a matrix with columns being the k largest eigenvectors

4. Define Y as X with all columns normalized to unit length

5. Cluster Y with K-means (a row in Y is considered as a datapoint to cluster)

6. Assign the original datapoints (from the adjacency matrix) to their clusters based on what their corresponding row in Y was 
clustered as.

In[108]:= k = 4;

largestEigenVals, largestEigenVecs = EigensystemNnjwLaplacian,4;

X = TransposelargestEigenVecs;

MatrixPlot[X];

rows,cols = Dimensions[X];

Y = ConstantArray0, rows,cols;

Fori = 1, i <= cols, i++, YAll,i = NormalizeXAll, i;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";
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As can be seen from the plot , the 4 clusters found by the spectral clustering are: 

Cluster 1: Approximately 0-120

Cluster 2 : Approximately: 120-170

Cluster 3 : Approximately: 170-210

Cluster 4: Approximately: 210 -241

Test clustering with “wrong” k

In[117]:= k = 3;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 2;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 5;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 6;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";
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Homework 4: Graph Spectra
Graph 2
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Graph Import

In[247]:= SetDirectoryNotebookDirectory[];

edgeList = Import"example2_clean.csv","Data";

graph = GraphDirectedEdge@@@ edgeList,VertexLabels→"Name";
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General Graph Properties

Edge Count

Printed by Wolfram Mathematica Student Edition



In[250]:= EdgeCountgraph;

2418

Vertex Count

In[251]:= VertexCountgraph;

100

Degree Distribution

In[252]:= HistogramVertexDegreegraph,{1},"Probability",AxesLabel→"degree","probability";

ListLogLogPlotGroupByVertexDegreegraph, Count, AxesLabel→"count","degree";

1 2 5 10 20
count

5

10

20

50

degree

Log-Log plot over degree distribution to do a rough test for powerlaw. The distribution 

has some linear tendency but not clear enough to be powerlaw.

In[254]:=
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Global Clustering Coefficient

In[255]:= GlobalClusteringCoefficientgraph;

3649

9580

Graph Communities

Communities Count

In[256]:= LengthFindGraphCommunitiesgraph;

2

Communities Plot

In[257]:= CommunityGraphPlotgraph;
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Graph Spectra

Graph Spectra

In[258]:= A = AdjacencyMatrixgraph;

eigenVals,eigenVecs =Eigensystem[N[A]];

Node Centralities

PageRank Centrality

In[260]:= MaxPageRankCentralNode = VertexListgraphPositionPageRankCentralitygraph,

MaxPageRankCentralitygraph[[1]];

HighlightGraphgraph, MaxPageRankCentralNode;
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Degree Centrality

In[262]:= MaxDegreeCentralNode = VertexListgraphPositionDegreeCentralitygraph,

MaxDegreeCentralitygraph[[1]];

HighlightGraphgraph, MaxDegreeCentralNode;

In[264]:=
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Closeness Centrality
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In[265]:= MaxClosenessCentralityNode = VertexListgraphPositionClosenessCentralitygraph,

MaxClosenessCentralitygraph[[1]];

HighlightGraphgraph, MaxClosenessCentralityNode;
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Betweenness Centrality

In[267]:= MaxBetweenessCentralityNode = VertexListgraphPositionBetweennessCentralitygraph,

MaxBetweennessCentralitygraph[[1]];

HighlightGraphgraph, MaxBetweenessCentralityNode;
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{15}

EigenVector Centrality
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In[269]:= MaxEigenVectorCentralityNode = VertexListgraphPositionEigenvectorCentralitygraph

MaxEigenvectorCentralitygraph[[1]];

HighlightGraphgraph, MaxEigenVectorCentralityNode;
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Clustering Coefficient

In[271]:= MaxClusterNode = VertexListgraphPositionLocalClusteringCoefficientgraph,

MaxLocalClusteringCoefficientgraph[[1]];

HighlightGraphgraph, MaxClusterNode;
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Adjacency Matrix Heatmap, Non-Normalized Laplacian (Kirchoff), Affinity Matrix

Plotting the heatmap of the adjacency matrix is a common way to visualize a network, it is especially effective when the node

partitons are ordered based on node-ids. In our case (unlike the first example graph) there is no correlation between node-ids

and the partitions, thus the adjacency matrix is not as informative as it was for example graph 1

There exists multiple versions of the Laplacian matrix with small modifications, the Kirchoff matrix is one of them. The affinity

matrix is computed as the Jordan Decomposition of the Adjaceny matrix. There are many spectrums that are useful for graph

analysis, including the spectrum of the adjacency matrix, the transition matrix and the Laplacian matrix. However, the Lapla-

cian matrix is the most useful for reasoning about the connectivity of the graph as well as its clustering.
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In[273]:= MatrixPlot[A];

kirchoffLaplacianMatrix = KirchhoffMatrixgraph;

MatrixPlotkirchoffLaplacianMatrix;

affinityMatrix, s = JordanDecomposition[N[Transpose[A]]];

MatrixPlotaffinityMatrix;
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Adjacency Matrix plot 
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KirchoffLaplacian Matrix (not normalized)
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Affinity Matrix Plot

Degree Matrix, Simple Laplacian

The Degree Matrix D is a diagonal matrix with the degree of each node i on the diagonal (i,i). Here I also compute the simple

Laplacian matrix which is L = D - A.

In[278]:= {n,n} = Dimensions[A];

DegreeMatrix = ConstantArray[0, {n,n}];

Fori = 1, i <= n, i++, DegreeMatrixi,i = TotalAi;

MatrixPlotDegreeMatrix;

simpleLaplacian = DegreeMatrix - A;

MatrixPlotsimpleLaplacian;
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Degree Matrix Plot
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Simple Laplacian Matrix Plot

EigenGap of Simple Laplacian and Fiedler Vector

In the Laplacian we know that λ1 = 0 with a corresponding eigenvector v1 = [1, ..., 1]. This follows from the fact that the rows

and the columns of the Laplacian sum up to 0 (each row contains number of -1 as number of neighbors plus one entry on the

row which is the degree of the node). Further more we can tell by analyzing the higher-order eigenvalues how many connected

components the graph has and whether it is a good expander or not. In our case  λ1 = λ2 = 0 which means that the graph has 2

connected components. We also know from spectral graph theory that λn ≤ 2which is in concordance with our results below.

Furthermore, by looking at the eigen-gap between λ2and λ3we can tell whether it is close or not that there is a third discon-

nected component, and we can see that the third component seems to be quite well connected since the eigen-gap is quite large.
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Finally, the eigenvector associated with λ2, also know as the “Fiedler Vector”,  can give a bi-partition of the graph. The Fiedler

does not indicate the k-clusters but it can indicate the optimal 2-clusters (and if applied recursively it can even find k clusters,

but typically to exploit higher order eigenvectors is a better approach). 

smallestEigenVals, smallestEigenVecs = EigensystemNsimpleLaplacian, -10;

ListPlotReverseChopsmallestEigenVals, AxesLabel→"ith smallest eigenvalue","value"

fiedlerVector = smallestEigenVecs[[-2]];

ListLinePlotSortfiedlerVector, AxesLabel→"node","value in fiedler vector";
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ith smallest eigenvalue

5

10

15

value

We can see that there is a gap between the 2th smallest eigenvalue and the 3th small-

est eigenvalue of the simple Laplacian. This indicates that there are 2 clusters.
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Sorted Fiedler Vector plot, gives a near optimal 2-way partitioning by assigning nodes 

to partitions based on their index in the Fiedler vector and the sign of the value in the 

vector.

Ng, Jordan, & Weiss Laplacian

As mentioned, there are many variants of the laplacian matrix used in different contexts, they all have the same basic characteris-

tics and differ  only slightly.  In the code snippet below the Laplacian of  the Ng,  Jordan & Weiss paper is  computed as L =
D-1/2 AD-1/2
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Printed by Wolfram Mathematica Student Edition



In[288]:= k = 2;

{n,n} = Dimensions[A];

njwLaplacian = MatrixPowerDegreeMatrix,-(1/2).A.MatrixPowerDegreeMatrix, -(1/2);

MatrixPlotnjwLaplacian;
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Ng, Jordan, & Weiss Laplacian

Ng, Jordan, & Weiss Spectral Clustering

Here the bulk of the algorithm in the paper is implemented. 

1. Decide k, we chose k = 2 since this was obvious from the preprocessing, e.g there are 2 connected components for instance.

2. The eigendecomposition of the Laplacian is computed

3. X is formed as a matrix with columns being the k largest eigenvectors

4. Define Y as X with all columns normalized to unit length

5. Cluster Y with K-means (a row in Y is considered as a datapoint to cluster)

6. Assign the original datapoints (from the adjacency matrix) to their clusters based on what their corresponding row in Y was 
clustered as.

In[292]:= k = 2;

largestEigenVals, largestEigenVecs = EigensystemNnjwLaplacian,4;

X = TransposelargestEigenVecs;

MatrixPlot[X];

rows,cols = Dimensions[X];

Y = ConstantArray0, rows,cols;

Fori = 1, i <= cols, i++, YAll,i = NormalizeXAll, i;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";
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As can be seen from the plot , the 2 clusters have quite mixed node-ids. One cluster is 

larger than the other. 

Test clustering with “wrong” k
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In[301]:= k = 3;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 4;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 5;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";

k = 6;

clusters = ClusteringComponentsY,k,1, Method→ "KMeans";

ListPlotclusters, AxesLabel→"node","cluster";
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k = 4
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k  = 6
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Homework 5: K-way Graph Partitioning Using JaBeJa

Konstantin Sozinov, sozinov@kth.se
Kim Hammar, kimham@kth.se

December 12, 2017

1 Introduction
The main algorithm can be found in the Jabeja.java file. We implemented the Ja-Be-Ja distributed
graph partitoning algorithm in Java, following the given template code as well as the pseudo-code
in the paper. This report includes evalautions of the algorithm on three graphs: add20, elt3 and
twitter. The evaluations indicate that different parameters of the algorithm are suitable for each
of the graphs in a number of metrics: convergence time, edge-cut, swaps, and node-migrations.
Finally, we implemented our own extension to the simulated annealing of Ja-Be-Ja and demonstrate
some interesting results.

The algorithm is vertex-parallel. Each vertex performs local search to improve the partition-
ing by minimizing the edge cuts locally. Formally, the local search of node p tries to minimize
argminc

∑
v∈Np

dp − dp(c), where Np is the neighborhood of p, dp = |Np|, and dp(c) is the num-
ber of neighbors with color c. Each vertex only has access to its local view of nodes and edges
in the graph, and attempts to swap colors with its neighbors to improve its local situation, and
(hopefully) also improve the global partitioning. The global edge-cut size is also denoted as the
energy of the system. Ja-Be-Ja is an heuristic algorithm based on a portion of randomness when
using simulated annealing. Ja-Be-Ja does not provide any upper or lower bound guarantees on
the resulting partitions. Nodes only swap colors if it reduces their local energy. There are three
policies to select nodes for swapping: random, local, and uniform. A node will go through all its
selected nodes and see which one is best to swap with for each iteration.

To escape local minimas, Ja-Be-Ja utilizes simulated annealing. The basic simulated annealing
outlined in the paper uses a temperature factor T , when T > 1 swap-decisions are biased towards
swapping rather than not-swapping, even if it could increase the energy of the system. T is
reduced over time until it reaches 1. The second version of simulated annealing uses the technique
outlined in a blog post 1. To summarize, this approach to simulated annealing goes over all
neighboring solutions and selects the best solution using the following formula for acceptance
probability, ap = e

cold−cnew
T . Furthermore, we also implemented this technique using restarts,

meaning that when T = 0 it is reset back to 1.
Finally, our own version of simulated annealing got inspiration from the Momentum technique,

known to improve Gradient Descent convergence time. Formally we use momentum as follows:

momentum = max(0, µ · (c(t)new − c(t−1)new ))

ap = e
cold−(cnew−momentum)

T

Where µ is the momentum coefficient. When using momentum we did not use any restarts of
T .

2 Evaluation and results
For all tasks we used the hybrid selection policy as that was presented as the best policy in the
paper. Additionally we tried to stick to the values of α and δ that performed best in the paper.

1http://katrinaeg.com/simulated-annealing.html
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2.1 Task 1 - Linear Simulated Annealing, no restarts, no randomness

graph delta T edge-cut rounds swaps migrations partitions converge alpha policy
add20 0.003 2 2095 1000 1090263 1751 4 yes 2 hybrid
3elt 0.003 2 2604 1000 1580209 3328 4 yes 2 hybrid
twitter 0.003 2 41156 1000 899515 2049 4 yes 2 hybrid

Figure 1: 3elt

Figure 2: add20

2



Figure 3: twitter

What can be noted about these results are that the algorithm converged early and to a bad
solution (local optima) in all three cases.

2.2 Task 2.1 - Linear Simulated annealing, no restarts, randomness and
acceptance probability

graph delta T edge-cut rounds swaps migrations partitions converge alpha policy
3elt 0.003 1 2190 1000 103586 3274 4 yes 2 hybrid
add20 0.003 1 2060 1000 373826 1745 4 yes 2 hybrid
twitter 0.003 1 41115 1000 48804 2046 4 yes 2 hybrid
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Figure 4: 3elt

Figure 5: add20
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Figure 6: twitter

What can be noted about these results are that the new simulated annealing technique gave a
lot better results on 3elt, but almost the same results on add20 and twitter graphs. Furthermore
the algorithm converged in all cases (local optima problem again).

2.3 Task 2.2 - Linear Simulated annealing with restarts, randomness
and acceptance probability

graph delta T edge-
cut

rounds swaps migrations partitions converge alpha policy restart

3elt 0.003 1 2037 1000 4463446 3296 4 no 2 hybrid 1
add20 0.003 1 2348 1000 2303961 1746 4 no 2 hybrid 1
twitter 0.003 1 41147 1000 2494681 2049 4 yes 2 hybrid 1
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Figure 7: 3elt

Figure 8: add20
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Figure 9: twitter

The results demonstrate that adding restarts did not help much without tuning the rest of the
parameters.

2.4 Task 2.3 Exponential simulated annealing with restarts, randomness
and acceptance probability

graph delta T edge-
cut

rounds swaps migrations partitions converge alpha policy restart

3elt 0.003 1 2504 1000 4713193 3328 4 no 2 hybrid 1
add20 0.003 1 2471 1000 2392641 1679 4 no 2 hybrid 1
twitter 0.003 1 41327 1000 2636468 2045 4 yes 2 hybrid 1
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Figure 10: 3elt

Figure 11: add20
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Figure 12: twitter

The results with exponential simulated annealing without parameter tuning gave consistently
worse results.

2.5 Task 2.4 Linea simulated annealing with restarts, randomness and
acceptance probability - Parameter tuning

graph delta T edge-
cut

rounds swaps migrations partitions converge alpha policy restart

3elt 0.00001 1 1021 10000 42010302 3441 4 no 2 hybrid 1
3elt 0.00001 1 1208 10000 42541398 3425 4 no 1 hybrid 1
3elt 0.003 1 1011 10000 44596460 3422 4 no 2 hybrid 1
3elt 0.003 1 731 50000 222928227 3435 4 yes 2 hybrid 1
add20 0.00001 1 2196 10000 22126510 1753 4 no 2 hybrid 1
add20 0.00001 1 1792 10000 21773341 1757 4 yes 1 hybrid 1
add20 0.003 1 1780 10000 22704110 1734 4 yes 1 hybrid 1
twitter 0.00001 1 41258 2000 4739316 2046 4 yes 2 hybrid 1
twitter 0.003 1 40841 2000 5000891 2043 4 yes 1 hybrid 1
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Figure 13: 3elt

Figure 14: add20

10



Figure 15: twitter

From these results we can see that by tuning some parameters, primarily alpha, and the number
of rounds, we can greatly improve the partitions on all graphs. Both twitter and add20 gave better
results with α = 1.

2.6 Bonus Task: Momentum + Simulated Annealing

graph delta T edge-
cut

rounds swaps migrations partitions converge alpha policy momentum

3elt 0.003 1 1256 1000 4280889 3420 4 no 2 hybrid 0.001
3elt 0.003 1 5139 1000 4685823 3535 4 no 2 hybrid 10
3elt 0.003 1 1344 1000 4281498 3397 4 no 2 hybrid 0.0001
3elt 0.003 1 697 10000 42315849 3457 4 no 2 hybrid 0.001
3elt 0.003 1 518 50000 210569840 3463 4 yes 2 hybrid 0.001
add20 0.003 1 2095 1000 2294945 1815 4 no 2 hybrid 0.001
add20 0.003 1 1997 10000 22776283 1785 4 yes 1 hybrid 0.00001
twitter 0.003 1 41137 1000 2485027 2034 4 yes 2 hybrid 0.001
twitter 0.003 1 40878 1000 2498748 2035 4 yes 1 hybrid 0.001
twitter 0.003 1 40833 1000 2488748 2041 4 yes 1 hybrid 0.0001
twitter 0.003 1 41436 1000 2490911 2068 4 yes 1 hybrid 0.00001

With the momentum technique we achieved the best results on 3elt! And about the same results
on add20 and twitter. Primarily the momentum improved the convergence time as we can see that
only after 1000 iterations we got pretty good results on 3elt.

3 Conclusion
We got pretty close to the results presented in the paper but still a bit off, this is likely because we
did not tune all parameters, for example we did very little tuning of δ, T, α, restart,momentum.
For proper evaluation we could have applied grid search or random search to find the optimal
parameters.

Finally, momentum looks like an promising techniques to improve convergence rate on some
graphs.
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4 How to run
Clone this repository and navigate to jabeja project. Then use:

/run.sh -graph ./graphs/3elt.graph -rounds 5000 -numPartitions 4 -temp 1
-delta 0.00001 -restart 0.000001 -alpha 1 -nodeSelectionPolicy HYBRID -momentum 0.001
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