
Homework 1 Kim Hammar
ID2209 Due Date: 14 November 2016
Distributed Artifical Intelligence and Intelligent Agents

Problem Statement

The given task was to implement a very basic MultiAgentSystem (M.A.S) using the JAVA Agent
Development Framework (JADE) [2], with the purpose of getting hands on experience with
agent platforms and in particular the JADE agent platform. The assignment was also designed
in a way to give experience programming agents in the context of a practical scenario.

Main problems and solutions

• Connecting agents through a platform that can be used for interaction and service discovery

The JADE framework provides, among other things, a runtime environment where JADE
agents can “live”. The agents in the M.A.S for this assignment are distributed on different
JADE containers that all are connected to a single platform, which enable the agents to
utilize the JADE runtime environment to find and interact with each other.

• Agent design (micro perspective): designing agents that can act autonomously in a given
environment and make decisions.

Agents in this M.A.S perform tasks and perceive the environment to achieve their goals.
Using JADE, the main mechanisms for designing and implementing agent tasks is through
use of behaviours.

• Society design (macro perspective): designing interactions for cooperation and coordina-
tion between agents in a M.A.S

The Foundation for Intelligent Physical Agents (FIPA) is used as the main Agent Com-
munication Language (ACL) between agents in this M.A.S.

Connecting Agents

We refer to each running instance of JADE runtime environment as a Container, which can
contain zero or more agents. The set of active containers is called a Platform and each platform
have one container that is a special main container [1]. The most important aspect of the main
container is to connect other containers together and to provide two essential services: AMS
and DF, AMS (Agent Management System) is a naming service that ensures that each agent
on the platform has a unique name. DF (Directory Facilitator) aka “The Yellow Pages” is a
service where agents can register as providers of certain services and where agents can search
for providers of specific services.

When running the M.A.S for this assignment the typical setup is to use 4 containers:

I Main container: required container for connecting the other containers. Does not host
any agents directly in this setup.

1



II Container 1: Container where one ore more curator agents live.

III Container 2: Container where one ore more tourguide agents live.

IV Container 3: Container where one ore more profiler agents live.

Agent Design

There are three different types of agents in this system,

• CuratorAgent: Agent with the goal of monitoring an artgallery and respond to re-
quests for art information from TourGuideAgents and ProfilerAgents. The CuratorAgent
registers at the DF as a provider of the artgallery-information service, this agent per-
ceives its environment mainly through the main container and its message-mailbox. The
tasks/JADE behaviours of this agent are:

– A ParallelBehaviour consisting of three SubBehaviours:

∗ GenreRequestServer - A CyclicBehaviour that receives requests for a list of
all genres of the monitored art gallery and responds to it.

∗ TourRequestServer - A CyclicBehaviour that receives requests for a list of
artifacts in the artgallery that matches a certain genre/interest and responds to
it.

∗ ArtifactRequestServer - A CyclicBehaviour that receives requests for details
about a certain artifact in the artallery and responds to it.

• TourGuideAgent: Agent with the goal to build virtual tours upon requests from Profil-
erAgents. The TourGuideAgent interacts with CuratorAgents to retrieve information for
tours. The TourGuideAgent registers at the DF as providing the virtualtour service,
and perceives its environment mainly through the main container and its message-mailbox.
The tasks/JADE behaviours of this agent are:

– A ParallelBehaviour consisting of three SubBehaviours:

∗ CuratorSubscriber - A SubscriptionInitiator behaviour that subscribes
to the DF service to receive notifications when new agents that provide the
artgallery-information service (a service that is provided by CuratorAgents)
registers.

∗ ProfilerMatcher - An AchieveREResponder that receives requests from Profil-
erAgents asking what kind of genres it can build virtual tours for. This behaviour
is linked to the FindSupportedInterest behaviour (which is an AchieveREInitiator)
that will be invoked when a request is received in order to: (i) ask discovered
curator agents about their genres, (ii) build a list of all genres, (iii) respond to
the requester with the list of genres.

∗ VirtualTourServer - An AchieveREResponder that receives requests for vir-
tual tours for specific interests/genres from profilers. When a request is re-
ceived it will cause the BuildVirtualTour behaviour to be invoked which is an
AchieveREInitiator that will send requests to all discovered curators and build
a list of 〈Artifact, Curator〉 pairs that matches the given interest and finally it
will respond with the built list to the requester.

2



• ProfilerAgent: Agent that maintains the profile of a user and that has the goal of
travelling around the network and collecting interesting (from the user’s point of view)
information about art. The agent perceives its environment mainly through the main
container and input from the user. The tasks/JADE behaviours of this agent are:

– A FSMBehaviour consisting of 7 states and 10 different state transitions. The states
are:

∗ INITIALIZE_USER_PROFILE - An OneShotBehaviour that interacts with the user
for initializing the user profile (only invoked if command-line aguments wasn’t
supplied)

∗ SEARCH_TOURGUIDES_STATE - An OneShotBehaviour that queries the DF for a
list of all agents that provide the virtualtour service.

∗ FIND_MATCHING_TOUR_GUIDES_STATE - An AchieveREInitiator that sends request-
queries to all found TourGuideAgents asking what type of tours they provide.

∗ SELECT_TOURGUIDE_STATE - An OneShotBehaviour for presenting the found
tourguides and the types of tours they offer to the user and letting the user
choose a tourguide.

∗ FIND_VIRTUAL_TOUR_STATE - An AchieveREInitiator that sends a request to
a chosen tourguide, requesting a virtual tour matching the interest of the user.

∗ SELECT_ARTIFACT_STATE - An OneShotBehaviour for presenting the virtual tour
to the user and letting the user pick artifacts to visit.

∗ RETRIEVE_ARTIFACT_STATE - An AchieveREInitiator that sends a request for
details about the artifact to the curator of the artifact in the virtual tour that
was selected. When the details are retrieved they are presented to the user.

3



1

2

3

4

5

6

7

INITIALIZE_USER_PROFILE

SEA
R
C
H
_TO

U
R
G
U
ID
ES

FIND_MATCHING_TOURGUIDE

SELECT_TOURGUIDE

FIND_VIRTUAL_TOUR

S
E
L
E
C
T
_
A
R
T
IF
A
C
T

RETRIEVE_ARTIFACT

USER

DF

TOURGUIDES

USER

TOURGUIDE

USER

CURATOR

Figure 1: FSMBehaviour of ProfilerAgent

Society Design

From the presentation of the agent designs it should be clear that they need to interact in
order to complete their individual goals. As mentioned, FIPA ACL is used for communication
to gurarantee a consistent syntax of messages. The central concept for communication is that
agents explicitly state a performative-verb together with the content of each message. The
performative verb decides how the agent at the receiving side will interpret the message. FIPA
defines a large set of performative verbs, the main ones used in this M.A.S are:

query-ref Used by one agent to determine the specific value for an expression [3], for example
when a profiler agent queries tour guides for the types of virtual tours they support.

4



request Allows an agent to request another agent to perform some action [3], for example when
a profiler agent requests a tourguide agent to build a virtual tour for a specific interest.

agree Used to indicate that the agent has agreed a request made by another agent [3], for
example when a tourguide receivs a request to build a virtual tour it responds with a
message with this performative before actually building the tour.

inform Basic performative for communicating information [3], used for example by an tour-
guide agent to inform a profiler after having successfully built a virtual tour upon request.

failure Indicates that an attempt to perform some action failed [3], used by tourguide agents
to respond to profilers if they fail to build a virtual tour (for example if curators did not
respond).

Conclusions

Building a M.A.S consisting of autonomous agents that interact with each other is different to
building “regular” distributed systems. In this assignment the agents were benevolent towards
each other which eased the development quite abit, since there were no need to be concerned
about negotiations to solve conflicts. The main hurdle to overcome when developing this M.A.S
as opposed to regular distributed systems was to understand how the agents interact through
performative verbs, JADE libraries and predefined behaviours were useful in this aspect.

Attachments

Documented source code can be found in the attached zipfile. See README.MD in the root
directory for instruction on how to execute and build the program.

References
[1] Giovanni Caire. Jade turorial. http://jade.tilab.com/doc/tutorials/

JADEProgramming-Tutorial-for-beginners.pdf, 2009. [Online; accessed 12-Nov-2016].

[2] Telecom Italia. Java agent development framework. http://jade.tilab.com/, 2016. [On-
line; accessed 11-Nov-2016].

[3] Michael Woolridge and Michael J. Wooldridge. Introduction to Multiagent Systems, 2nd
Edition. John Wiley & Sons, Inc., New York, NY, USA, 2009.

5

http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/doc/tutorials/JADEProgramming-Tutorial-for-beginners.pdf
http://jade.tilab.com/


Homework 2 Kim Hammar
ID2209 Due Date: 22 November 2016
Distributed Artifical Intelligence and Intelligent Agents

Problem Statement

Implementing the FIPA Dutch Auction Interaction Protocol [1] using the JAVA Agent Devel-
opment Framework (JADE) [2] and laying out a theoretical model of the the game mechanisms
involved in dutch auctions between autonomous self-interested agents. The purpose of the home-
work was to get further practice in developing MultiAgentSystems (M.A.S) and in particular
M.A.S that involves negotiatons between agents.

Main problems and solutions

• Implementing the FIPA dutch action protocol in JADE

– Agent design - Designing and implementing auctioneer and bidder agents.

– Society design - Implementing the interactions of the protocol as defined by the
specification [1].

• Establish a theoretical model for a specific scenario and apply concepts from game theory

All possible strategies for the agents were considered to find which strategies are in Nash
equilibrium.

Task 1: Implementation

Agent design

Two type of agents are used in the dutch auction scenario for this assignment:

• ArtistManagerAgent

The ArtistManagerAgent is the auctioneer in this scenario; it auctions out artifacts from
artists through dutch auctions. When carrying out a dutch auction the auctioneer tries
to find the market price for a given good, i.e. the auctioneer starts out offering the good
at some artificially high price and then continously lowers the price for each round until
some bidder accepts the price or the price reaches the reserved price. The reserved price
is the lowest price that the auctioneer is willing to sell the good for, if no bidder accepts
that price then the auction is cancelled and the good is not sold.

The ArtistManagerAgent is self-interested and wants to sell goods for as high price as
possible to increase its personal revenue. For each auction i the ArtistManagerAgent will
select a strategy si consisting of:

I Initial price

1



II Rate of reduction (i.e. how much to lower price from one round to the next one if
no buyer was found)

III Reserve price

Frankly, a self-interested auctioneer with infinite time would put the initial price arbitrary
high and the rate of reduction arbitrary low since that would guarantee that the auctioneer
would receive the highest price possible for a certain good. However if we assume that
the auctioneer to some degree values his time, then he would start the auction at an
initial price that is higher than what he expect that good to be sold for, but still within a
realistic price-range. Further more, the auctioneer would choose a rate of reduction high
enough such that participans in the auction that chose not to bid in a previous round
might consider to bid in the next round.

The best strategy for the auctioneer is the strategy that optimizes the expected revenue.
The expected revenue depends on the type of auction as well as the strategies of the
bidders. Dutch auction gives best expected revenue if the agents use risk-averse strategies.

The ArtistManagerAgent is implemented with a FSMBehaviour with all the different
states of a dutch auction, i.e.: FIND_BIDDERS_STATE, OPEN_AUCTION_STATE, SEND_CFP_STATE,
COLLECT_BIDS_STATE, MODIFY_PRICE_STATE, SELECT_WINNER_STATE, CLOSE_AUCTION_STATE.

• CuratorAgent

The CuratorAgent acts as a bidder in this scenario, it receives the current price of each
round in the dutch auction and can choose to either bid and accept the price or to ignore
the price (i.e. not bid). The agent is self-interested and wants to obtain artifacts that it
is interested in for as low price as possible.

Typically for each dutch auction i a participating bidder would have a personal valuation
of the good that is being auctioned and then follow a strategy si that decides when to bid
and when not to bid. The agent could be risk-neutral and bid for the auction at the first
round that has an announced price less than or equal to its private valuation. The agent
could also be risk-averse, if the true value of some good is unknown an agent might be
willing to bid higher than its private valuation. Or, the agent could be risk-inclined and
try to obtain the good for a price lower than its private valuation but with a increased
risk of loosing the good to another bidder.

The essential thing here is that the best strategy for a particular CuratorAgent depends
on what strategies the auctioneer and other bidders choose. For instance if a curator
agent knows that the auctioneer has a reserved price far lower than its own valuation of
the good and that the other bidders will not bid unless the price reaches some even lower
value, then the best strategy for the agent is to be risk-inclined. Unless the winner of the
auction has complete information about the auctioneer’s and the other bidder’s strategies
then it will always be susceptible to the winner’s curse, i.e. the agent does’nt know if it
should be happy with winning the auction or worried because he might have overvalued
the good.

The CuratorAgent is implemented with a ParallelBehaviour for receiving different mes-
sages of the FIPA Dutch Auction Interaction Protocol and taking the appropriate action.

2



Society design

The implementation follows the specification of the FIPA Dutch Auction Interaction Protocol
[1] to the full, it uses exactly the same messages and interactions as the specification suggest.
In case of multiple, competing and simultaneous bids the first-come-first-served principle is
applied.

Task 2: Game mechanisms

To find a pure-strategy nash equilibrium we consider each possible combination of strategies,
and for each combination we check whether this combination forms a best response for every
agent.

Agents
Agents = {ProfilerAgent (PA), ArtistManagerAgent (AMA), CuratorAgent (CA)}

Actions
AcAMA = {sell-high-quality (HQ), sell-low-quality (LQ)}
AcCA = {quote-based-on-demand (QD), quote-based-on-interest (QI)}
AcP A = {buy (B), not-buy (NB)}

Outcomes
3 agents having 2 distinct actions each means 23 = 8 different combinations of actions
and outcomes.

Ω = {ω1, ω2, ω3, ω4, ω5, ω6, ω7, ω8}

Environment function
The outcomes depend on the combination of actions performed by the different agents,
which can be modelled with an environment function τ .

τ(HQ,QD,B) = ω1 τ(HQ,QD,NB) = ω2 τ(HQ,QI,N) = ω3
τ(HQ,QI,NB) = ω4 τ(LQ,QD,B) = ω5 τ(LQ,QD,NB) = ω6
τ(LQ,QI,B) = ω7 τ(LQ,QI,NB) = ω8

Utility functions
The utility function ui maps outcomes to utility for Agent i. The utillities are based on
the assumptions listed in the assignment.

ArtistManagerAgent
uAMA(ω1) = 1 uAMA(ω2) = −2 uAMA(ω3) = 1 uAMA(ω4) = −2
uAMA(ω5) = 2 uAMA(ω6) = −1 uAMA(ω7) = 2 uAMA(ω8) = −1

Preference ordering of ArtistManagerAgent for the different outcomes:
{ω5, ω7} �AMA {ω1, ω3} �AMA {ω6, ω8} �AMA {ω2, ω4}

CuratorAgent
uCA(ω1) = 1 uCA(ω2) = 1 uCA(ω3) = 1 uCA(ω4) = 1
uCA(ω5) = 1 uCA(ω6) = 1 uCA(ω7) = 1 uCA(ω8) = 1

ProfilerAgent
uP A(ω1) = 2 uP A(ω2) = 0 uP A(ω3) = 2 uP A(ω4) = 0
uP A(ω5) = 1 uP A(ω6) = 0 uP A(ω7) = 1 uP A(ω8) = 0

3



Preference ordering of ProfilerAgent for the different outcomes:
{ω1, ω3} �P A {ω5, ω7} �P A {ω2, ω4, ω6, ω8}

Since the CuratorAgent cannot affect the outcome and has a role of a simple intermediate
point in the buying and selling between ArtistManagerAgent and ProfilerAgent, we can
neglect it in the analysis of strategies and nash equilibriums.

There exists a dominant strategy for the ProfilerAgent, which is to always buy, and
furthermore there exist a dominant strategy for the ArtistManagerAgent aswell which is
to always produce a low quality product (it follows from the assumption in the assignment
that the ProfilerAgent does not know the quality of the product until after buying it).
The payoff matrix between the agents looks like the following.

ArtistManagerAgent
HQ LQ

ProfilerAgent B (2, 1) (1, 2)
NB (0,−2) (0,−1)

As the matrix shows, there is a single nash equilibrium, namely the actions: (B,LQ). Assuming
that ProfilerAgent chooses to buy, the best strategy for ArtistManagerAgent is to produce/sell a
low quality product and likewise assuming that the ArtistManagerAgent chooses to produce/sell
a low-quality product the best strategy for the ProfilerAgent is to buy, i.e. neither agent has
any incentive to deviate from the equilibrium. Note that the nash equlibrium in this case is
also Pareto efficient.

The strategy for finding the nash equilibrium is to eliminate dominated outcomes, since there
exists a dominant strategy for both of the agents we can exclude all outcomes that are domi-
nated, because in either of the dominated outcomes there is atleast one agent will be better of
choosing another strategy, no matter what the other agent chooses.

ArtistManagerAgent
HQ LQ

ProfilerAgent B (2, 1) (1, 2)
NB (0,−2) (0,−1)

Conclusions

Auctions are mechanisms to reach agreement on the issue of allocating resources between entities
and can be used just as well for agents as for humans. Dutch auctions are a special type of
auction that is open-cry descending, which requires minimal communication between bidder and
auctioneer agents to reach agreement on allocating resources.

In a M.A.S with self-interested agents that are operating in the same environment, finding the
best decision for each agent in many cases resembles studies from game theory. Concepts like
dominant strategies, Pareto efficiency and Nash eqilibrium can often be applied when analyzing
interactions between self-interested agents in a M.A.S.

4



Attachments

Documented source code can be found in the attached zipfile. See README.MD in the root
directory for instruction on how to execute and build the program.

References
[1] Foundation for Intelligent Physical Agents. Fipa dutch auction interaction protocol speci-

fication. http://www.fipa.org/specs/fipa00032/XC00032F.pdf, 2001. [Online; accessed
18-Nov-2016].

[2] Telecom Italia. Java agent development framework. http://jade.tilab.com/, 2016. [On-
line; accessed 11-Nov-2016].

5

http://www.fipa.org/specs/fipa00032/XC00032F.pdf
http://jade.tilab.com/


Homework 3 Kim Hammar
ID2209 Due Date: 29 November 2016
Distributed Artifical Intelligence and Intelligent Agents

Problem Statement

Implement the following using the JAVA Agent Development Framework (JADE) [1]

Task #1 M.A.S for solving the N-Queens problem where agents coordinate with each other to
choose the right positions.

Task #2 M.A.S with mobile agents that can perform dutch auction in different places. Mo-
bility means in this context that agents have the possibility to move between containers.

N-Queens

Agent Design

The M.A.S for task #1 consists of only one agent-type, the QueenAgent. The QueenAgent is
designed to be reactive and receiving messages from other agents, upon receipt of a message from
another queen, the agent will compute a “safe” position on the board according to the following
algorithm (randomness is used to be able to find different solutions to the same puzzle):

Algorithm 1 QueenAgent algorithm for selecting a slot on the board
Require:

B . Board
id . Id of the agent
T . Safe positions on the current board that have already been tried

Ensure:
p is the selected safe position which have not previously been tried. If no safe position is
found, p = −1.
procedure SELECT_SAFES_SLOT(B,id,T)

R ← Shuffle(B[id]) . random shuffle the row of possible positions
p← −1
for r ∈ R do

i←indexOf(r)
if safeDiagonally(i) ∧ safeVertically(i) ∧¬i ∈ T then

p← i
break

end if
end for

end procedure

1



Society Design

The QueenAgent’s will take turn selecting slot on the board, the first queen will initialize the
puzzle by selecting a slot on the board and then notifying the next queen to indicate that it
is its turn to select a slot. If a queen finds a safe slot and there is no queen left that have’nt
selected a slot, the puzzle is solved. Further more if a QueenAgent fails to find a safe slot on the
board it will notify the preceeding agent about this and ask it to change its slot on the board.
If an agent fails to find a safe slot on the board that have’nt already been tried and there is no
preceeding queen to notify, the puzzle is considered unsolvable. In order for the queens to find
each other they register at the DirectoryFacilitator (DF).

Mobile Agents

Agent Design

The CuratorAgent and ArtistManagerAgent in this scenario uses the same behaviours as for
Homework2 with a few modifications:

• Both agents runs in parallel to their other behaviours, a cyclic behaviour ReceiveCommands
that receives commands from a controller agent to do one of the following: (i) move to a
container (ii) clone itself (iii) kill itself

• Both agents use GUI’s for interacting with the user and start/stopping auctions rather
than the command-line as used in Homework2.

• The ArtistManagerAgent will run two cyclic behaviours ClonesServer and AuctionResultServer
in parallel with other behaviours for receiving auction-results from clones and for receiving
the final winner-bid from parents, respectively. Consequently, after finnishing an auction,
if the ArtistManagerAgent is a clone and has a “parent”-agent, it will send the result to
that agent and if a ArtistManagerAgent is a parent, it will collect results from clones,
choose a winner, and notify the clones about the winner.

• Auctions are ran locally on containers, not globally on the platform.

In addition to the CuratorAgent and ArtistManagerAgent, a third agent called ControllerAgent
is used. The ControllerAgent and associated ControllerGUI is inspired from the example code
at the tutorial [2] that was recommended as a guide for this assignment. The ControllerAgent
creates containers as well as agents and issues commands to existing agents to move, clone or
die. The ControllerAgent communicates with the user through the ControllerGUI.

Society Design

The dutch auction interactions from Homework2 have been extended for intra-platform mobility
where auctions are performed locally on containers instead of globally on platforms. Further
more the results of auctions are forwarded by clones to parent-agents which will synthesize
the results and present the best price from its point of view, the result is then forwarded to
the clones who will notify the bidders about the result. The interactions between bidders and
auctioneers in the actual auction is identical to the interactions presented in Homework2.

ControllerAgent communicates with the AgentManagementSystem (AMS) to retrieve a list of all
containers on the platform. The ControllerAgent also communicates with agents that it have

2



created by sending simple one-to-one commands to agents, where no reply is expected. The
commands that might be sent from the ControllerAgent to created agents are: clone, move,
kill.

Conclusions

Extending simple agents to be intra-platform mobile allows for designing agents with further
capabilities for acting autonomously. The agents for this homework were limited to mobility
within a single platform but the same design principles could be applied for inter-platform
mobility if the underlying agent-architecture allows for it.

Attachments

Documented source code can be found in the attached zipfile. See README.MD in the root
directory for instruction on how to execute and build the program.

References
[1] Telecom Italia. Java agent development framework. http://jade.tilab.com/, 2016. [On-

line; accessed 11-Nov-2016].

[2] Jean Vaucher and Ambroise Ncho. Jade tutorial and primer. http://www.iro.umontreal.
ca/~vaucher/Agents/Jade/JadePrimer.html, 2003. [Online; accessed 26-Nov-2016].

3

http://jade.tilab.com/
http://www.iro.umontreal.ca/~vaucher/Agents/Jade/JadePrimer.html
http://www.iro.umontreal.ca/~vaucher/Agents/Jade/JadePrimer.html

