
Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Distributed Artificial Intelligence and
Intelligent Agents (ID2209): Project

assignment

Kim Hammar, Stockholm 16446

kimham@kth.se

I. Introduction

The work presented in this report is part of the final project in the course Distributed Artificial
Intelligence and Intelligent Agents. The focus of the project is on Agent Oriented Software
Engineering, where I apply various different methodologies and compare them. The methods are
applied to the business case of the SmartMuseum framework as of which have been used during
the course for numerous programming assignments.

If agents are to realise their potential as a software engineering paradigm, then it is necessary to
develop software engineering techniques that are specifically tailored to them.[14]

II. Task 1 - Modeling with GAIA Methdology

In this section the result of modeling the SmartMuseum framework with the GAIA methodology
[14] is presented.

The GAIA methdology is essentially a systematic procedure of transforming a set of articulated
requirements for the system/organization to a design. For structural reasons the design is done in
steps and is divided into various related models that use different levels of detail. The system in
this context is a SmartMuseum Agent Framework, as of following the GAIA methodology [14] I
will from here on frequently use the organization metaphor when referring to the system.

I. Analysis

I.1 Requirements Statement

I.1.1 Mission Statement

The SmartMuseum organization has the purpose of connecting different people and entities that
are in some sense involved in consuming or providing services related to art. The goal of the
organization is to improve the overall experience for everyone involved. The organization should
make it easier for consumers to view and find interesting art, for art-curators to provide art and
reach out to consumers, for tourguides to find interested consumers as well as building relevant
tours and finally for artists to sell their work.

I.1.2 Organization Description

The activity of a consumer viewing an art-artifact involves atleast three, sometimes four, or
five main divisions: tour-guide division, art-curator division, artist-management division, user-service

1

mailto:kimham@kth.se

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

division and artist-division. The activity is initiated by the consumer who contacts the user-service
division and selects some type of art-service, the user-service divison support the consumer
in requesting/retrieving the service from either the art-curator division or tour-guide-division.
In parellel to managing consumer requests the tour-guide division browses art-artifacts that is
curated by the art-curator division. Further more, the art-curator divison participates in auctions
for obtaining art-artifacts from the artist-management division, in parallel to managing requests
from consumers and tourguides. Finally, the artist-management division initiates auctions for
art-artifacts on request from artists.

The activities described above can the be modelled as an organization in the following way.
The organization consists of 7 roles. The ArtConsumer (AC) who consumes arts in different
forms. The UserHandler (UH) which the consumer uses to purchase and browse services related
to art. The TourGuide (TG) which builds and offers virtual tours. The ArtBuyer (AB) who buys
art to include in its gallery/museum, the ArtQuoter (AQ) who quotes the price for arts and sells
it to consumers. The ArtSeller (AS) who is hired by artists to sell their work to art buyers. And
finally the Artist (A) who produces art.

I.2 Roles Model

The following assumption is necessary to avoid making decisions about implementation details
when doing the analysis/design.

Assumption 1-A. Roles can find each other in some way in order to communicate

2

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: ArtConsumer (AC)

Description:
Initiates activity of consuming art, either buying artifact or downloading a virtual tour

Protocols and activities:
DownloadVirtualTour, BuyArt, VisitArtifact, ViewArtifact

Permissions:
reads supplied availableServices // list of services

money // money of the consumer
userPro f ile // profile of the consumer
visitedArti f acts // list of visited artifacts

generates valuation // valuation of selected artifact
arti f actTitle // title of selected artifact
virtualTourTitle // title of selected virtual-tour
moneyForArti f act // money for selected artifact
supplied virtualTour // downloaded virtual-tour
supplied auctionResult // bought artifact or nil

Responsibilities
Liveness:

ArtConsumer = (GetService. ConsumeService)ω

ConsumeService = (VisitArtifact | ViewArtifact)
GetService = (DownloadVirtualTour | BuyArt)

Safety:

• moneyForArti f act ≤ money

• arti f actTitle ∈ availableServices.arti f acts

• virtualTourTitle ∈ availableServices.arti f acts

Figure 1: Schema for role ArtConsumer

3

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: UserHandler (UH)

Description:
Receives request to buy art-services from consumers and manages the process of the
consumer purchasing and obtaining the service.

Protocols and activities:
GetArtifact, GetVirtualTour, GetArtifactsList,
GetVirtualTourList, GenerateListOfArtServices

Permissions:
generates availableServices // list of services

strategy // strategy for dutch auction
reads supplied virtualTours // list of virtual tours

supplied arti f acts // list of art-artifacts
supplied moneyForArti f act // consumer money to purchase artifact
supplied valuation // consumer valuation of artifact
supplied arti f actTitle // title of artifact-purchase
supplied virtualTourTitle // title of virtual-tour selection
supplied virtualTour // virtual-tour downloaded by consumer
supplied auctionResult // artifact bought by consumer or nil

Responsibilities
Liveness:

UserHandler = (All)ω

All = (PresentServices || HandleConsumerRequest)ω

PresentServices = GetServices. GenerateListOfArtServices
GetServices = GetArtifactsList. GetVirtualToursList
HandleConsumerRequest = GetArtifact | GetVirtualTour

Safety:

• availableServices = arti f acts ∪ virtualTours

• auctionResult 6= nil =⇒ auctionResult ∈ arti f acts

• virtualTour ∈ virtualTours

Figure 2: Schema for role UserHandler

4

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: TourGuide (TG)

Description:
Responsible for constructing virtual tours of art-artifacts. Looks up available
artifacts at curators and then builds different types of tours.
Sends tours to user-handlers.

Protocols and activities:
SendVirtualTours, SendVirtualTour, GetArtifactList, BuildVirtualTour

Permissions:
generates virtualTour // virtual tour of art-artifacts

virtualTours // list of virtual-tours
reads supplied arti f acts // list of artifacts

supplied virtualTourTitle // specific virtual-tour title

Responsibilities
Liveness:

TourGuideBuilder = (ConstructTour || [Send])ω

ConstructTour = (GetArtifactList. BuildVirtualTour)ω

Send = SendVirtualTours | SendVirtualTour
Safety:

• ∀virtualTour.arti f act virtualTour.arti f act ∈ arti f acts

Figure 3: Schema for role TourGuide

5

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: ArtBuyer (AB)

Description:
Buys art-artifacts from art-sellers.

Protocols and activities:
BuyArt, SendArtifacts, HandleVisit

Permissions:
generates arti f acts // list of purchased artifacts

strategy // strategy for dutch auction
valuation // valuation for artifact
moneyForArti f act // money for artifact

reads money // the buyer’s money
arti f actTitle // title for a specific artifact
supplied arti f actResult // bought artifact or nil

Responsibilities
Liveness:

ArtBuyer = ([BuyArt] || [SendArtifacts] || [HandleVisit])ω

Safety:

• moneyForArti f act ≤ money

• arti f actTitle ∈ arti f acts

Figure 4: Schema for role ArtBuyer

6

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: ArtQuoter (AQ)

Description:
Quotes art and resells it to consumers

Protocols and activities:
QuoteArt, SellArt, GetArtifacts, SendArtifacts

Permissions:
reads supplied arti f acts // list of artifacts

supplied arti f act // artifact for auction
generates quote // quote of artifact

rateO f Reduction // rate of reduction for dutch auction
initialPrice // initial price for auction
reservePrice // reserved price for auction
price // price auction ended at
winner // winner of auction or nil
arti f actResult // result of auction
bidders // bidders of auction

Responsibilities
Liveness:

ArtQuoter = ((GetArtifacts. QuoteArt. SellArt) || SendArtifacts)ω

Safety:

• winner ∈ bidders

• reservePrice ≤ price ≤ initialPrice

Figure 5: Schema for role ArtQuoter

7

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: ArtSeller (AS)

Description:
Sells art to art-traders/curators.

Protocols and activities:
SellArt, GetArtifact

Permissions:
reads supplied arti f act // artifact to be sold
generates rateO f Reduction // rate of reduction for dutch auction

initialPrice // initial price for auction
reservePrice // reserved price for auction
price // price auction ended at
winner // winner of auction or nil
arti f actResult // result of auction
bidders // bidders of auction

Responsibilities
Liveness:

ArtSeller = (GetArtifact. SellArt)ω

Safety:

• winner ∈ bidders

• reservePrice ≤ price ≤ initialPrice

Figure 6: Schema for role ArtSeller

8

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Role Schema: Artist (A)

Description:
Sells art to art-traders/curators.

Protocols and activities:
ProduceArt, SendArtifact

Permissions:
generates arti f act // produced artifact

Responsibilities
Liveness:

Artist = (ProduceArt. SendArtifact)ω

Safety:

• true

Figure 7: Schema for role Artist

9

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I.3 Interaction Model

AC UH

(a)

Select virtual tour from

list to download.

UH

GetVirtualTour

SelectVirtualTour

AC UH

SelectArtifact

Select artifact to buy

UHAC AC

Provides virtual tour Attempts to buy the

artifact

virtualTourTitle

virtualTourTitle

virtualTour

artifactTitle

artifactTitle
moneyForArtifact
valuation

GetArtifact

auctionResult

VisitArtifact artifactTitle
curator

AC AB

Visits artifact

HandleVisit

artifactTitleAB AC

Handles user visiting

to view an artifact

(b)

(c)

Figure 8: Definition of protocols associated with the ArtConsumer role: (a) DownloadVirtualTour,
(b) VisitArtifact (c) BuyArt

10

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

AQ

 SellArt

AQ UH

RequestVirtualTourList

UH TG

Request a list of virtual

tours that can be

presented to consumers.

TG UH

Provides list of virtual

(b)

(a) (c)

UH

RequestVirtualTour

UH TG

Requests a specific

virtual tour to download

on behalf of consumer

SendVirtualTour

TG UH

Provides virtual tour

tour desciptions

UH AQ

RequestArtifactList

AQ UH

(d)

virtualTours artifacts

artifactTitle virtualTourTitle

virtualtour

SendVirtualTours SendArtifactList

virtualTourTitle

Sells artifact or

rejects bid and

returns nil

Provides a list of

artifacts for sale

Request a list of

artifacts for sale

ParticipateInAuction
valuation

strategy

artifact
rateOfReduction
reservePrice

auctionResult

moneyForArtifact

Participates in dutch

auction for artifact

initialPrice
bidders

Figure 9: Definition of protocols associated with the UserHandler role: (a) GetArtifact, (b)
GetVirtualTourList, (c) GetVirtualTour, (d) GetArtifactsList

11

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

TG UH

Sends list of virtual tours

built.

TG UH

SendVirtualTour

SendVirtualTours

Sends specific virtual

tour built.

viritualTours

virtualTour

virtualTourTitle

(b)

(a)

RequestArtifactList

TG

SendArtifactList

TG

(c)

artifacts

Request a list of

artifacts for visit

AB

AB

Provides a list of

artifacts for visit

Figure 10: Definition of protocols associated with the TourGuide role: (a) SendVirtualTours, (b)
SendVirtualTour, (c) GetArtifactList

12

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

ASAB

SellArt

AS AB

(a)

SendArtifacts

AB AQ

artifacts

Sends list of artifacts

for sale

SendArtifacts

AB TG

Sends list of artifacts

for visit

artifacts

artifactTitle

Sells artifact or

rejects bid and

returns nil

valuation

strategy

artifact
reservePrice
rateOfReduction

auctionResult

moneyForArtifact

ParticipateInAuction

Participates in dutch

auction for artifact

initialPrice
bidders

HandleVisit

AB AC

Handles user visiting

to view an artifact

artifactTitle

(b)

(c)

(d)

Figure 11: Definition of protocols associated with the ArtBuyer role: (a) BuyArt, (b) HandleVisit,
(c) SendArtifacts (1), (d) SendArtifacts (2)

13

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

AQ UH

Sells artifact to buyer

or rejects bid and

returns nil

(a)

AQ UH

Provides a list of

artifacts that are for

sale
artifacts

SendArtifacts

RequestArtifactList

AQ AB

Request a list of

bought artifacts to

quote price on.

SendArtifacts

Sends a list of

artifacts for sale

AB AQ

artifacts

(c)

(b)

artifact
reservePrice
rateOfReduction

DutchAuction

InformParticipants

winner
price

AQ UH

Inform participants of

auction result

winner

price

auctionResult

artifact

initialPrice
bidders

bidders

Figure 12: Definition of protocols associated with the ArtQuoter role: (a) SellArt, (b) SendArtifacts,
(c) GetArtifacts

14

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

AS AB

Sells artifact or

rejects bid and

reutrns nil

(a) (b)

AS A

Request details about

artifact to be sold

A AS

Send details about

own artifact

artifact

RequestArtifact

SendArtifact

DutchAuction

InformParticipants

winner
price

price
winner

artifact

auctionResult

AS AB

Inform participants

about result of auction

artifact

rateOfReduction
reservePrice

initialPrice

bidders

bidders

Figure 13: Definition of protocols associated with the ArtSeller role: (a) SellArt, (b) GetArtifact

A AS

Send details about

artifact

artifact

(a)

SendArtifact

Figure 14: Definition of protocols associated with the Artist role: (a) SendArtifact

15

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II. Design

II.1 Agent Model

ArtConsumer UserHandler

ProfilerAgent TourGuideAgent

TourGuide ArtBuyer

CuratorAgent

ArtQuoter ArtSeller Artist

ArtistManagerAgent

**
**

Figure 15: The agent model

II.2 Services Model

Table 1: Services model for agent ProfilerAgent

Service Inputs Outputs Pre-condition Post-condition
obtain virtual-tour
list

virtualTours true virtualTours 6= nil

obtain artifact list arti f acts true arti f acts 6= nil
generate list of ser-
vices

virtualTours
, arti f acts

availableServices ∃virtualTours, arti f acts created list of available
services

register as bidder
for auction

auctioneer, arti f act auction exists sel f ∈
auctioneer.bidders ∧
strategy 6= nil

receive CFP currentPrice is participating in the auc-
tion

true

place bid currentPrice currentPrice ≤
moneyForArti f act

bid sent to auctioneer

receive bid result accept ∨
reject

have bidded bid accepted or rejected

informed auction
ended

arti f act∨ nil participated in auction informed auction ended
and received result

download virtual
tour

tourguide, virtualtour ∃tourguide, virtualtour downloaded virtual tour

visitArtifact curator, arti f actTitle arti f actTitle ∈
curator.gallery.titles

arti f actTitle ∈
visitedArti f acts

16

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Table 2: Services model for agent TourGuideAgent

Service Inputs Outputs Pre-condition Post-condition
obtain artifact list arti f acts true arti f acts 6= nil
manage virtual-
tour request

virtualTourTitle virtualTour ∨
nil

true true

manage list of
virtual-tours-
request

virtualTours true true

build virtual tour arti f acts virtualTour arti f acts.size > 0 virtualTour 6= nil

Table 3: Services model for agent ArtistManagerAgent

Service Inputs Outputs Pre-condition Post-condition
get registered bid-
ders

bidders true true

send inform-start-
of-auction

bidders in f ormMessage bidders are registered bidders informed about
start of auction

send CFP bidders CFP bidders are registered and
auction ongoing

bidders informed about
current price and encour-
aged to bid

receive bid bid bids bidder registered bid ∈ bids
manage bids bids bidResponses bids > 0 one bid was accepted and

the bidder received the
good, the rest was rejected
and the bidders were in-
formed

modify price reservePrice,
rateO f Reduction,
currentPrice

newPrice no bids was received reservePrice ≤
newPrice ≤ currentPrice

send inform-
auction-closed

bidders,
auctionResult

in f ormMessage bidders are registered bidders informed about
close of auction

17

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Table 4: Services model for agent CuratorAgent

Service Inputs Outputs Pre-condition Post-condition
get registered bid-
ders

bidders true true

register as bidder
for auction

auctioneer, arti f act auction exists sel f ∈
auctioneer.bidders ∧
strategy 6= nil

receive CFP currentPrice is participating in the auc-
tion

true

place bid currentPrice currentPrice ≤
moneyForArti f act

bid sent to auctioneer

receive bid result accept ∨ reject have bidded bid accepted or rejected
informed auction
ended

arti f act ∨ nil participated in auction curator were informed
auction ended and re-
ceived result

manage artifact-list
request

arti f acts true true

manage visit-
artifact request

arti f actTitle arti f act true provided artifact for visit
only

quote art arti f act quote true true
send inform-start-
of-auction

bidders in f ormMessage bidders are registered bidders informed about
start of auction

send CFP bidders CFP bidders are registered and
auction ongoing

bidders informed about
current price and encour-
aged to bid

receive bid bid bids bidder registered bid ∈ bids
manage bids bids bidResponses bids > 0 one bid was accepted and

the bidder received the
good, the rest was rejected
and the bidders were in-
formed

modify price reservePrice,
rateO f Reduction,
currentPrice

newPrice no bids was received reservePrice ≤
newPrice ≤ currentPrice

send inform-
auction-closed

bidders,
auctionResult

in f ormMessage bidders are registered bidders informed about
close of auction

18

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II.3 Acquaintance Model

TourGuideAgent ProfilerAgent

CuratorAgent

ArtistManagerAgent

Figure 16: Acquaintance model

II.4 Mobility Model

Assumption 2-A. I’ve assumed the mobile architecture that I used for homework 3, i.e that only artistman-
ager agents and curator agents are mobile and can clone themself. Further more the cardinality of agents
and places also follow from this assumption.

19

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Table 5: Place Types

Place Types Description Instances
Heritage Malta Container Container where art-

curators can reside and
perform their services
and where artistman-
ager agents can reside
temporarily to perform
auctions

1

Museo Galileo Container Container where art-
curators can reside and
perform their services
and where artistman-
ager agents can reside
temporarily to perform
auctions

1

ArtistManager Container Container where artist-
manager agents reside
and where they come
back to after performing
auctions

*

ProfilerAgent Container Container where profiler
agents reside

*

TourGuideAgent Con-
tainer

Container where tour-
guide agents reside

*

Table 6: Agents and Places Specification

Agent Type Mobile Place Type Constraints
ProfilerAgent No ProfilerAgent Container
TourGuideAgent No TourGuideAgent Con-

tainer
CuratorAgent Yes Museo Galileo Container,

Heritage Malta Container
ArtistManagerAgent Yes ArtistManagerAgentContainer,

Museo Galileo Container,
Heritage Malta Container

20

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

CuratorAgent Heritage Malta Container

3

3

CuratorAgent Museo Galileo Container

Heritage Malta ContainerArtistManagerAgent

1

ArtistManagerAgent Museo Galileo Container

1

ArtistManagerAgent

*

ArtistManager Container

ProfilerAgent ProfilerAgent Container

*

TourGuideAgent

*

TourGuideAgent Container

Figure 17: Cardinality of Agents and Places

21

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Agent Type: CuratorAgent

Description: Can be cloned in current container to participate in auctions.
Origin: Heritage Malta Container or Museo Galileo Container.
Final Destination: Same as its origin container.
List of atomic movements:

1 Cloned in Heritage Malta Container

2 Cloned in Museo Galileo Container

Paths:
Cloned in the same container, no paths.

Figure 18: Travel schema for agentCuratorAgent

Agent Type: ArtistManagerAgent

Description: Can move between Museo Galileo Container, Heritage Malta Container
and ArtistManager Container.

Origin: ArtistManager Container
Final Destination: ArtistManager Container
List of atomic movements:

1 Move from ArtistManager to Heritage Malta Container.

2 Move from Heritage Malta to ArtistManager Container.

3 Move from ArtistManager to Museo Galieo Container.

4 Move from Museo Galieo to ArtistManager Container.

5 Move from Museo Galieo to Heritage Malta Container.

6 Move from Heritage Malta to Museo Galieo Container.

Paths:

1 1.2
1 3.4
1 1.6
1 3.5
1 3.5.2
1 1.6.4

Figure 19: Travel schema for agentArtistManagerAgent

22

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Agent Type: ProfilerAgent

Description: Static agent, not mobile.
Origin: ProfilerAgentContainer
Final Destination: ProfilerAgentContainer
List of atomic movements:

The agent is static and don’t have any atomic movements.

Paths:
No paths

Figure 20: Travel schema for agentProfilerAgent

Agent Type: TourGuideAgent

Description: Static agent, not mobile.
Origin: TourGuideAgentContainer
Final Destination: TourGuideAgentContainer
List of atomic movements:

The agent is static and don’t have any atomic movements.

Paths:
No paths

Figure 21: Travel schema for agentTourGuideAgent

III. Task 2 - Modeling with AgentUML

An alternative to the GAIA modeling approach is stick to UML, which is the dominant way
of modeling in general software engineering and in particular object-oriented areas. However
in the context of agent-oriented programing the UML standard have some obvious problems
which are to be expected since UML was not designed for agent-oriented programming but rather
object-oriented. Agent UML is an extension to UML with the purpose of making UML more usable
for agent-based systems. In this section the result of modeling the SmartMuseum framework with
the AgentUML method, and specifically with the approach used in [11] is presented.

I. The Overall Protocol

I.1 ArtistManager Auction package

High-level overview of the protocol where ArtistManagerAgents auctions art-artifacts to Curator-
Agents using dutch auctions.

23

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

inform−start−of−auction, cfp, not−understood*, propose*,

accept−proposal*, reject−proposal*, inform−end−of−auction

Deadline: varying

ArtistManagerAgent, CuratorAgent

ArtistManagerAgent Auction

Figure 22: ArtistManager Auction package

I.2 Curator Auction package

High-level overview of the protocol where CuratorAgents auctions art-artifacts to ProfilerAgents
using dutch auctions.

inform−start−of−auction, cfp, not−understood*, propose*,

accept−proposal*, reject−proposal*, inform−end−of−auction

Deadline: varying

CuratorAgent, ProfilerAgent

CuratorAgent Auction

Figure 23: Curator Auction package

24

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I.3 BuildVirtualTour package

High-level overview of the protocol where TourGuideAgents sonds the terrain of artifacts at
different curators and then build virtual tours of different type.

call−for−artifact−lists, artifact−list−response*,

not−understood*

TourGuideAgent, CuratorAgent

BuildVirtualTour

Deadline: no deadline

Figure 24: BuildVirtualTour package

I.4 FindVirtualTour package

High-level overview of the protocol where ProfilerAgents searches for virtual tours and rejects or
selects the virtual tours.

25

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Deadline: varying

call−for−available−virtual−tours, virtual−tour−response*,

not−understood, select−virtual−tour, reject−virtual−tour,

send−virtual−tour

FindVirtualTour

ProfilerAgent, TourGuideAgent

Figure 25: FindVirtualTour package

I.5 VisitArtifact package

High-level overview of the protocol where ProfilerAgents visits artifacts from a virtual tour.

get−artifact, artifact−response, not−understood

ProfilerAgent, CuratorAgent

VisitArtifact

Deadline: no deadline

Figure 26: VisitArtifact package

26

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II. Interactions Among Agents

II.1 ArtistManagerAgent Auction

Sequence diagram over the ArtistManagerAgent Auction protocol. When invoked the ArtistMan-
agerAgent sends an in f orm− start− o f − auction message to n number of CuratorAgents, then it
sends a call for proposal with the current price, c f p− 1 to n CuratorAgents. CuratorAgents can
then either not respond at all or respond with either not− understood or propose. The diamond
and X indicates that one of the two choices, exlusive, need to be taken. The ArtistManagerAgent
will then correspondingly take different action based on which response it receives. If it receives a
not− understood response it does nothing, if it receives a propose response (bid) it will either reject
or accept it. Finally if the ArtistManagerAgent did’nt receive any bids for a certain amount of time
it can either send out another c f p or close the auction by sending a in f orm− end− o f − auction
message in case the reservedPrice was reached.

27

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

ArtistManagerAgent CuratorAgent

1 ninform−start−of−auction

1 n

X

X m

i

X

propose1

reject−proposal

i

X

accept−proposal

1

n

cfp−1

cfp−2

[reserved price] inform−end−of−auction

ArtistManagerAgent Auction

not−understood

Figure 27: Sequence diagram over the interaction for ArtistManagerAgent Auction

28

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II.2 CuratorAgent Auction

Sequence diagram over the CuratorAgent Auction protocol, this protocol follows the same dutch
auction protocol as ArtistManagerAgentProtocol.

1 ninform−start−of−auction

1 n

X

X m

i

X

propose1

reject−proposal

i

X

accept−proposal

1

n

cfp−1

cfp−2

[reserved price] inform−end−of−auction

CuratorAgent Auction

CuratorAgent ProfilerAgent

not−understood

Figure 28: Sequence diagram over the interaction for CuratorAgent Auction

29

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II.3 BuildVirtualTour

Sequence diagram over the BuildVirtualTour protocol. When invoked the TourGuideAgent sends
a call − f or− arti f act− lists to n CuratorAgents. CuratorAgents can then choose to not respond
or respond with either not− understood or arti f act− list− response.

1 n

X

X m

i1

BuildVirtualTour

TourGuideAgent CuratorAgent

call−for−artifact−lists

artifact−list−response

not−understood

1

Figure 29: Sequence diagram over the interaction for BuildVirtualTour

II.4 FindVirtualTour

Sequence diagram over the FindVirtualTour protocol. When invoked the ProfilerAgent sends
a call − f or − available − virtual − tours to n TourGuideAgents. TourGuideAgents can then
choose to not respond or respond with either not− understood or virtual − tour− response. If the
ProfilerAgent receives a not− understood message it does nothing, if it receives a virtual − tour−
response it either responds with select− virtual − tour upon the tourguide responds with the full

30

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

virtual-tour, or reject− virtual − tour.

1 n

X

X m

i1

not−understood

FindVirtualTour

ProfilerAgent TourGuideAgent

call−for−available−virtual−tours

virtual−tour−response

1

X

reject−virtual−tour

1

select−virtual−tour

send−virtual−tour1

i,i−1

1

n

1

Figure 30: Sequence diagram over the interaction for FindVirtualTour

II.5 VisitArtifact

Sequence diagram over the VisitArtifact protocol. When invoked the ProfilerAgent sends a
get− arti f act message to 1 CuratorAgent. The CuratorAgent can then choose to not respond or
respond with either not− understood or arti f act− response.

31

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

1

CuratorAgent

VisitArtifact

ProfilerAgent

1get−artifact

X
1

X not−understood

1

artifact−response

Figure 31: Sequence diagram over the interaction for VisitArtifact

III. Internal Agent Processing

III.1 ArtistManagerAgent

The ArtistManagerAgent contains internal processing for modifying prices in the dutch auction as
well as selecting a winner when there is multiple bids. Many of the internal states depends on
external events from the interaction protocol.

32

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Null

AuctionStarted

WaitingForBids

RoundEnded PriceModified

AuctionEnded

AuctionClosed

sent inform−start−of−auction

to CuratorAgents

sent CFP to

CuratorAgents

timeout

modify price

CuratorAgent

sent bid

reached reserved price

sent CFP to

CuratorAgents

sent inform−end−of−auction

to CuratorAgents

Figure 32: Statechart diagram for ArtistManagerAgent

III.2 TourGuideAgent

The TourGuideAgent contains internal processing for building virtual tours bases on artifacts.
Many of the internal states depends on external events from the interaction protocol.

33

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Null
AwaitArtifactLists

ArtifactsAssembled

VirtualTourBuilt

built virtual tour

ReceivedVirtualToursRequest

CuratorAgent sent

list of artifacts

sent artifacts request

to CuratorAgents

ProfilerAgent sent

call for available

tours

SentListOfVirtualTours

sent list of

available virtual

TourAccepted TourRejected

ProfilerAgent sent

accept−tour message

ProfilerAgent sent

reject−tour message

tours to ProfilerAgent

Figure 33: Statechart diagram for TourGuideAgent

III.3 ProfilerAgent

The ProfilerAgent contains internal processing for choosing to participate in auctions, find virtual
tours, as well as visiting artifacts. Many of the internal states depends on external events from the
interaction protocol.

34

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Null

ParticipateInAuction ArtifactRequestSent

ReceivedArtifactAuctionRound

AuctionClosed

inform−start−of−auction

received

from CuratorAgent

received CFP from

CuratorAgent

received

inform−end−of−auction

from CuratorAgent

PlacedBid

Sent get−artifact

request to CuratorAgent

sent proposal
message to

CuratorAgent

Received artifact

from CuratorAgent

RequestedVirtualTours

sent call−for−available−

ReceivedVirtualTours
received list of

virtual tours

from TourGuideAgents

virtual−tours to TourGuideAgents

VirtualTourChosen

sent reject−virtual−tour

or accept−virtual−tour

ReceivedVirtualTour

received virtual

tour from

TourGuideAgent

to TourGuideAgents

Figure 34: Statechart diagram for ProfilerAgent

III.4 CuratorAgent

The CuratorAgent contains internal processing for participating in auctions, modifying prices in
the dutch auction as well as selecting a winner when there is multiple bids. Many of the internal
states depends on external events from the interaction protocol.

35

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Null

WaitingForBids

AuctionStartedParticipateInAuction

to ProfilerAgents
inform−start−of−auction
sent

sent CFP to

ProfilerAgents

PriceModifiedRoundEnded

timeout

sent CFP to

ProfilerAgents

AuctionEnded

reached reserved price

AuctionClosed

sent inform−end−of−auction

to ProfilerAgents

received

inform−start−of−auction

from ArtistManagerAgent

AuctionRound

received CFP from

ArtistManagerAgent

PlacedBid

AuctionClosedfrom ArtistManagerAgent

inform−end−of−auction

received

InformBidders

ProfilerAgent

sent bid

sent bid−accepted/

bid−rejected to bidders

RecievedArtifactListRequest

received

artifact−list

SentArtifactList

request from TourGuideAgent

sent artifact−list to

TourGuideAgent

ReceivedArtifactRequest

SentArtifact

sent artifact

to ProfilerAgent

received artifact

request from

ProfilerAgent

message to

ArtistManagerAgent

sent proposal

Figure 35: Statechart diagram for CuratorAgent

IV. Task 3 - UML Class Diagram Revisited

In this section the results from modelling the SmartMuseum framework with class diagrams as
described in [3] is presented.

36

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I. ArtistManagerAgent

Figure 36: Class diagram for ArtistManagerAgent

II. TourGuideAgent

Figure 37: Class diagram for TourGuideAgent

37

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

III. ProfilerAgent

Figure 38: Class diagram for ProfilerAgent

38

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

IV. CuratorAgent

Figure 39: Class diagram for CuratorAgent

V. Task 4 - Role-based Modeling with RoMAS

In this section the result from role-based modeling with the RoMAS [12] method is presented.
RoMAS is a role-based modeling methods for agent systems, it introduces a slightly new

concept of roles as compared to the role concept used in Task 1 for GAIA modeling. In particular
RoMAS modeling assumes that agent and role bindings are dynamic.

39

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I. Role-based Modeling of SmartMuseum Framework

I.1 Use cases

Figure 40: ConsumeVirtualTour usecase

Figure 41: CreateVirtualTour usecase

40

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Figure 42: CuratorBuy usecase

Figure 43: HobbyBuy usecase

41

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I.2 Roles

 <Goal>

<Service>

<Attribute>

artifacts

money

Sell art to curators

sellArt

ArtistSeller

Figure 44: ArtistSeller role

42

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

Curate art

Answer queries from external

entities about the artifacts

<Attribute>

Artifacts

RespondtToQueryAboutArtifacts()

<Service>

HandleUserVisit()
RespondToQueryAboutArtifact()

ArtCurator

Figure 45: ArtCurator role

43

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

<Service>

<Attribute>

Buy art from art−curators

artifacts

money

buyArt()

HobbyBuyer

Figure 46: HobbyBuyer role

44

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

<Service>

Creates virtual tours

Offers virtual tours to consumers

virtualTours

<Attribute>

TourGuide

handleUserDownloadRequest()

handleUserBrowseRequest()

createVirtualTour()

Figure 47: TourGuide role

45

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

<Service>

<Attribute>

Retrieve and consume virtual tours

virtualTour

TourParticipant

searchVirtualTour
retrieveVirtualTour
consumeVirtualTour

Figure 48: TourParticipant role

46

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

<Service>

<Attribute>

artifacts

money

Quote art and resell it for profit

sellArt

ArtQuoter

Figure 49: ArtQuoter role

47

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

 <Goal>

<Service>

<Attribute>

artifacts

money

buyArt()

CuratorBuyer

Buy art from artists

Figure 50: CuratorBuyer role

48

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I.3 RoleOrganization

ArtCurator ArtBuyer

Buy

Sell
ArtSeller

Query

Response TourGuide

ArtUser

TourParticipant

request/response

HobbyBuyer ArtQuoterCuratorBuyer ArtistSeller

Buy/SellBuy/Sell

Figure 51: Roles Organization

49

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I.4 Binding Agents to Roles

S0

Agent ArtistManagerAgent

<Attribute>

artifact
strategy

reservePrice

currentPrice

<<Ability>>

startAuction()

sendCFP()

closeAuction()

receiveBid()

<<BehaviourRule>>

r1: close auciton if reserved

price is reached.

r2: if more than one bid is

received, accept the first bid

ArtistSeller

A

ArtistManagerAgent ArtistSeller

Figure 52: ArtistManagerAgent binding to roles

50

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

<Attribute>

S0

Agent CuratorAgent

artifacts

strategy

reservePrice

initialPrice

money

<<Ability>>

startAuction()

sendCFP()

closeAuction()

modifyPrice()

sendArtifact()

sendArtifacts()

bid()
quoteArtifact()

registerForAuction()

receiveArtifactRequest()

receiveArtifactsRequest()

receiveAuctionResult()

receiveCFP()

receiveBid()

r1: only bid if current price is

less than or equal to personal

valuation times strategy

r2: close auction if reserved

price is reached

r3: if more than one bid is

received, accept the first bid

<<BehaviourRule>>

Curator

Buyer

ArtQuoter S1

S3

ArtCurator

A

CuratorAgent

CuratorBuyer

ArtQuoter

ArtCurator

Figure 53: CuratorAgent binding to roles

51

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

Agent ProfilerAgent

<Attribute>

money

userInfo

visitedArtifacts

strategy

<<Ability>>

registerForAuction()

requestVirtualTours()

requestVirtualTour()

requestArtifact()

requestArtifactList()

S0

HobbyBuyer

TourParticipant

bid()
receiveVirtualTour()

receiveVirtualTours()
receiveArtifacts()
receiveCFP()

receiveAuctionResult()

receiveBidResult()

sendVirtualTour()

<<Behaviour Rule>>

r1: only bid if current price is less than

or equal to personal valuation times

strategy

S1

A

ProfilerAgent

HobbyBuyer

TourParticipant

Figure 54: ProfilerAgent binding to roles

52

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

S0

<Attribute>

Agent TourGuideAgent

virtualTours

artifacts

<<Ability>>

requestArtifacts()

buildVirtualTour()

sendVirtualTour()

sendVirtualTours()
receiveVirtualTourListRequest()

receiveVirtualToursListRequest()

<<BehaviourRule>>

−−

TourGuide

TourGuideAgent

A

TourGuide

Figure 55: TourGuideAgent binding to roles

II. Comparison between RoMAS and GAIA

The resulting models are very similar, the same number of roles were identified in both cases
although the roles differ slightly. The models are dissimilar in that with RoMAS the notion that
an agent is made out of roles is very explicit while in GAIA the roles gets “lost” when moving
into the design phase. Another disparity between the two resulting models is that in the RoMAS
model the agent can dynamically change roles over time, while in GAIA the model is assumed to
be static. As stated in [14], the GAIA methdology is best suited for domains which inhabit the
following characteristics:

The organisation structure of the system is static, in that inter-agent relationships do not change
at run-time. The abilities of agents and the services they provide are static, in that they do not
change at run-time.[14]

In constrast, the RoMAS method do support dynamic binding of role to agent at runtime, and the
model only declares the initial binding between agents and roles.

VI. Task 5 - Comparing JADE to other Agent Platforms

In this section it follows a high-level comparison of JAVA Agent DEvelopment Framework (JADE)
[8], FIPA Open Source (FIPA-OS) [4], and JACK Intelligent Agents [2].

JADE is a framework for developing M.A.S in java where the developer is supposed to use
the regular Java language but adopt the guidelines provided by the framework to construct agent
systems. JACK is an agent platform developed on top of and integrated with Java, it works as an
agent-oriented extension to the object-oriented Java, it is its own language although closely coupled
with java. FIPA-OS is a set of components which constitute as the core of the FIPA specification,
which means that the developer can utilize this and focus on solving the real problem instead of
building agent infrastructure.

53

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

I. Services and Architectures

Platform Architecture Services
JADE Container-oriented architecture. Dis-

tributed containers that are connected
over the network through a message
transport system provided by JADE. [6]

Agent Management System (AMS) can
kill/create agents, provides a naming
service for all agents on the platform.
Directory Facilitator (DF) provides a
Yellow Pages service which agents can
use to find each other. Other notable
parts of JADE’s infrastructure are: ACL
infrastructure, support for agent mobil-
ity, built-in support for FIPA-compliant
protocols. [6]

FIPA-OS Component-oriented architecture.
When deploying an agent system
the developer choose a set of compo-
nents to use, some components are
mandatory, some are optional. [5]

Core components: Agent Shell pro-
vides a shell for agent implementation,
TM (Task Manager) support ability to
split functionality of agents, CM (Con-
versation Manager) enables to track
conversation state at the performative
level, MTS (Message Transport Service)
the general messaging service that en-
ables agents to communicate. Beyond
the mandatory components there are
a bunch of optional components, e.g
database factory, parser factory. FIPA-
OS also provides Directory Facilitator
and Agent Management System just as
JADE. Other notable parts of FIPA-OS’s
infrastructure are: ACL infrastructure,
support for agent mobility, built-in sup-
port for FIPA-compliant protocols. [5].

JACK JACK Agent Kernel, a runtime engine
that provides the infrastructure for de-
veloping agent systems. JACK uses a
communication layer. The developer
is not actively interacting with the ker-
nel but instead uses constructs in the
language declaring the name of agents,
the address of other agents etc, which
will allow the kernel to provide the
underlying infrastructure, e.g commu-
nication between agents. [9]

JACK provides a default messaging
service over UDP and has constructs
for a naming-service in the language.
One particular agent architecture have
stronger support than others in JACK
and that is the BDI architecture. JACK
provides different services related to
BDI such as BDI Models, ways of
declaring plans, beliefs and exter-
nal/internal events. TaskManager
which allows agents to schedule tasks.
JACK also provides services for team-
oriented programming as a way of co-
ordinating between agents. Other no-
table parts of JACK’s infrastructure are:
No support for agent mobility, built-in
support for FIPA-compliant protocols.
[10]

54

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

II. Implementation Comparison

• JADE:
In JADE, service implementation can be done by developing agents that listens for certain
type of messages, perform some action, and respond. The functionality for listening for
a certain type of messages is provided by the JADE runtime and allows to have multiple
services on the same host in a convenient way. Service registration and discovery is closley
coupled with the AMS Service and the DF service. The AMS service ensures a global name
space with unique names for adressing, the DF service is used to register services and to
find other registered services. AMS and DF are agents on their own which means that the
interaction with these services is done through messages passing. When registering a service
one could define different properties like name, type, description etc.

• FIPA-OS:
Service implementation in FIPA-OS can be done by developing agents that listens for specific
type of incoming connections by developing Tasks, Tasks’s can then be associated to different
events which allows to have multiple tasks on the same host/agent. FIPA-OS uses the same
type of services like JADE for service registration and discovery: AMS and DF [5].

• JACK:
In JACK an agent service can be implemented by using the constructs in the language like
#handles to declare which events this service/agent should react to, #posts, #sends for
event/message sending, #uses for declaring plans. To set up a service in JACK which can
be used by other agents, one can use a designated process/agent as a name-server, this name
server can be designed in different ways, for example it could do lookups of names to
port/address, or it could provide a service-registration service or similar. [9]

III. Notable Projects

• JADE:

– AMUSE (Agent-based Multi-User Social Environment): Software platform that facili-
tates the development of distributed social applications involving users that cooper-
ate/compete to achieve common or private goals. Within this scope the primary focus
of Amuse is on multi player on-line games [13].

• FIPA-OS:

– CRUMPET: The overall aim of the CRUMPET project is to implement, validate, and
trial tourism-related value-added services for nomadic users (across mobile and fixed
networks). [7]

• JACK:

– Realistic Virtual Actors: Simulation system in a military context, uses intelligent agents
for the simulation [1].

– Human Behaviour Representation: Application where realistic human behaviour is gener-
ated [1].

55

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

IV. Personal Judgement

JADE is the only platform I have had the chance to get practical experience working with
throughout the assignments in this course. JACK and FIPA-OS are two other platforms with
similar purposes as JADE, that I’ve only read about.

Something I’ve came to appreciate when using JADE to build agent systems is the simplicity in
how much you can build just by using the few default services provided by JADE like DF, AMS and
the message transport system. In my opinion JADE neatly provides the necessary infrastructure
without getting in the way for the programmer who can focus on solving the specific problem
at hand. Another pro of JADE in my opinion is the adoption of the FIPA specification, many
protocols and message formats are supported out of the box. Something I feel is lacking in JADE
is additional constructs in the framework for designing agents in the micro perspective. Agent
design in JADE is done through composing general behaviours, there is no explicit constructs for
using BDI architecture or similar.

Another deficiency with JADE in my opinion is the support for agent mobility, although
JADE provide some tools that allows to implement mobile agents, the support is very poor if
you compare to the standards of the rest of the platform. At the moment of writing this the
documentation for agent mobility is also sparse, perhaps because of this particular reason.

FIPA-OS is just as the name implies is also compliant with the FIPA specifications and is
very similar to JADE. An advantage I’ve found with FIPA-OS compared to JADE is the ability
to combine different components of the infrastructure architecture as you like, in this aspect
FIPA-OS provide more eligibility than JADE. FIPA-OS uses the Task abstraction which seems to be
analogous to the Behaviour abstraction in JADE.

JACK uses a different approach to FIPA-OS and JADE in that it has its own language. Some-
thing I feel missing in JACK is clear guidelines for designing agent systems in the macro perspective
as both JADE and FIPA-OS provides with their default services. Additionally, JACK does not
seem to have as good support for the FIPA specifications as JADE and FIPA-OS. JACK on the
other hand gives more sophisticated structures for designing agents in the micro perspective and
have very good support for BDI architectures in particular.

References

[1] AOS. Applications. http://aosgrp.com/applications/. [Online; accessed 13-Dec-2016].

[2] AOS. Jack. http://aosgrp.com/products/jack/, 2016. [Online; accessed 12-Dec-2016].

[3] Bernhard Bauer. UML Class Diagrams Revisited in the Context of Agent-Based Systems, pages
101–118. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

[4] emorphia. Fipa-os. http://fipa-os.sourceforge.net/index.htm, 2003. [Online; accessed
12-Dec-2016].

[5] emorphia. Fipa-os developers guide. http://fipa-os.sourceforge.net/docs/Developers_
Guide.pdf, 2016. [Online; accessed 12-Dec-2016].

[6] Tiziana Trucco Giovanni Rimassa Fabio Bellifemine, Giovanni Caire. Jade programmer’s guide.
http://jade.tilab.com/doc/programmersguide.pdf, 2016. [Online; accessed 13-Dec-2016].

[7] Foundation for Intelligent Physical Agents. External projects. http://www.fipa.org/
resources/projects.html#comma. [Online; accessed 13-Dec-2016].

56

http://aosgrp.com/applications/
http://aosgrp.com/products/jack/
http://fipa-os.sourceforge.net/index.htm
http://fipa-os.sourceforge.net/docs/Developers_Guide.pdf
http://fipa-os.sourceforge.net/docs/Developers_Guide.pdf
http://jade.tilab.com/doc/programmersguide.pdf
http://www.fipa.org/resources/projects.html#comma
http://www.fipa.org/resources/projects.html#comma

Royal Institute of Technology (KTH) Stockholm • 21 December 2016 • Group 20

[8] Telecom Italia. Java agent development framework. http://jade.tilab.com/, 2016. [Online;
accessed 11-Nov-2016].

[9] Agent Oriented Software Pty. Ltd. Jack intelligent agents agent manual. http://www.aosgrp.
com/documentation/jack/Agent_Manual.pdf, 2005. [Online; accessed 13-Dec-2016].

[10] Michael Luck, Ronald Ashri, and Mark d’Inverno. Agent-Based Software Development. Artech
House, 2004.

[11] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Representing agent interaction
protocols in uml. In First International Workshop, AOSE 2000 on Agent-oriented Software
Engineering, pages 121–140, Secaucus, NJ, USA, 2001. Springer-Verlag New York, Inc.

[12] QI YAN, LI-JUN SHAN, XIN-JUN MAO AND ZHI-CHANG QI. ROMAS: A ROLE-BASED
MODELING METHOD FOR MULTI-AGENT SYSTEM*.

[13] Telecomin Italia SpA. Amuse. http://jade.tilab.com/amuseproject/. [Online; accessed
13-Dec-2016].

[14] Michael Wooldridge, Nicholas R. Jennings, and David Kinny. The gaia methodology for
agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems, 3(3):285–312,
September 2000.

57

http://jade.tilab.com/
http://www.aosgrp.com/documentation/jack/Agent_Manual.pdf
http://www.aosgrp.com/documentation/jack/Agent_Manual.pdf
http://jade.tilab.com/amuseproject/

	Introduction
	Task 1 - Modeling with GAIA Methdology
	Analysis
	Requirements Statement
	Roles Model
	Interaction Model

	Design
	Agent Model
	Services Model
	Acquaintance Model
	Mobility Model

	Task 2 - Modeling with AgentUML
	The Overall Protocol
	ArtistManager Auction package
	Curator Auction package
	BuildVirtualTour package
	FindVirtualTour package
	VisitArtifact package

	Interactions Among Agents
	ArtistManagerAgent Auction
	CuratorAgent Auction
	BuildVirtualTour
	FindVirtualTour
	VisitArtifact

	Internal Agent Processing
	ArtistManagerAgent
	TourGuideAgent
	ProfilerAgent
	CuratorAgent

	Task 3 - UML Class Diagram Revisited
	ArtistManagerAgent
	TourGuideAgent
	ProfilerAgent
	CuratorAgent

	Task 4 - Role-based Modeling with RoMAS
	Role-based Modeling of SmartMuseum Framework
	Use cases
	Roles
	RoleOrganization
	Binding Agents to Roles

	Comparison between RoMAS and GAIA

	Task 5 - Comparing JADE to other Agent Platforms
	Services and Architectures
	Implementation Comparison
	Notable Projects
	Personal Judgement

