
Demonstrating a System for Dynamically Meeting
Management Objectives on a Service Mesh

Forough Shahab Samani†, Kim Hammar†, and Rolf Stadler†
† Dept. of Computer Science, KTH Royal Institute of Technology, Sweden

Email: {foro, kimham, stadler}@kth.se

Abstract—We demonstrate a management system that lets
a service provider achieve end-to-end management objectives
under varying load for applications on a service mesh based on
the Istio and Kubernetes platforms. The management objectives
for the demonstration include end-to-end delay bounds on service
requests, throughput objectives, and service differentiation. Our
method for finding effective control policies includes a simulator
and a control module. The simulator is instantiated with traces
from a testbed, and the control module trains a reinforcement
learning (RL) agent to efficiently learn effective control policies
on the simulator. The learned policies are then transfered to the
testbed to perform dynamic control actions based on monitored
system metrics. We show that the learned policies dynamically
meet management objectives on the testbed and can be changed
on the fly.

Index Terms—Performance management, reinforcement learn-
ing (RL), service mesh, digital twin, Istio, Kubernetes

I. INTRODUCTION

End-to-end performance objectives for a service are difficult
to achieve on a shared and virtualized infrastructure. This
is because the service load often changes in an operational
environment, and service platforms do not offer strict resource
isolation, so that the resource consumption of various tasks
running on a platform influences the service quality.

To continuously meet performance objectives for a service,
such as bounds on delays or throughput for service requests,
the management system must dynamically perform control
actions that re-allocate the resources of the infrastructure. Such
control actions can be taken on the physical, virtualization, or
service layer, and they include horizontal and vertical scaling
of computing resources, function placement, as well as request
routing and request dropping.

Current solutions for resource allocation and configuration
are either static configurations [1] or threshold-based dynamic
solutions [2], both of which have limitations. The static
solutions are typically tailored for each service running on
a system and tend to over-provision the available resources,
which can cost service providers excessively. Similarly, the
dynamic solutions are limited to case-specific problems (e.g.
scaling of CPU allocation) and depend on domain expertise.

As we demonstrate in this paper, a promising approach
to address the above limitations is to learn effective control
policies through Reinforcement Learning (RL). Specifically,
in this demo paper, we describe a management system based
on the RL framework presented in [3]. In our system, an
RL agent continuously monitors the target system and takes

Fig. 1. Architecture of the microservice-based system deployed on the service
mesh, which we use to demonstrate the management system.

control actions dynamically to meet management objectives.
We show that the system is able to continuously adapt to
changing objectives on a testbed that implements a service
mesh based on Kubernetes [4] and Istio [5] (see Fig. 1). We
also open-source the code [6], explain the testbed, and describe
our RL method.

II. DEMONSTRATION

We demonstrate the framework on a service mesh that
includes application services that execute concurrently. We
consider application services built from microservice compo-
nents, whereby each component performs a unique function.
A service request traverses a path on a directed graph whose
nodes offer microservices. A service is realized as a contiguous
subgraph on the service mesh. While the framework applies
to the general service mesh, we perform the demonstration on
the smaller configuration shown in Figure 2, right window.

We use our management system to demonstrate the follow-
ing:

1) Evolution of system metrics (e.g. end-to-end delay and
throughput) for a given management objective.

2) Reaction of the system to changing load conditions, e.g.
reaction to a change from a smooth periodic load pattern
to a probabilistic pattern with sudden changes.

3) Reaction of the system to changes in management ob-
jectives e.g. the reaction to a change from a management
objective that maximizes overall throughput to a man-

Fig. 2. Demonstration window: on the left side the service metrics, such as offered and carried load, response times of services, and performance of the
agent for the given management objective are presented; on the right side, at the top, the control parameters for the selected service are presented, and at the
bottom, time series of the actions taken by the agent is shown.

agement objective that prioritizes one service versus the
other.

To demonstrate all features listed above in a short amount of
time, we use prerecorded traces from the scenarios described
in [3].

Figure 2 pictures the main user interface of the management
system. The left window shows the system state. The state
consists of various service metrics, e.g. response times and
loads, which evolve in discrete time-steps. The left window
also shows the performance of the control policy in terms of
the reward function, which encodes the management objective.
At the top of the left window, a user can change the load
pattern and the management objective on the fly, which
causes the learned control policy to automatically adjust to
the changes.

The right window shows the service mesh configuration,
which is visualized as a directed graph with the routing
weights shown next to the edges, as well as the time series of
actions taken by the control policy.

The demonstration provides insight into the learned control
policies. We observe how control actions affect the system’s
performance and how they relate to the management objec-
tives. We also examine how the control policies react to dy-
namic changes in the system, e.g. changes in the management
objective and changes in the load pattern.

For example, we can observe that when the management
objective (MO) is to maximize the overall load while keeping
response times below a certain threshold (see MO1 in Section
III), the control policy prioritizes services with a short response

time, whereas when the management objective is to maximize
service utilities (see MO2 in Section III), the policy prioritizes
services with a high utility (e.g. high business value).

III. FORMAL MODEL AND SYSTEM IMPLEMENTATION

The formal model of our system is based on management
objectives, which capture the end-to-end performance objec-
tives for services on a given service mesh. These objectives
include client requirements and provider priorities.

In our mathematical formulation of management objectives,
we denote the services and computing node indexes by i and
j, respectively. Further, we let pij and bi denote the control
actions, where pij is the routing weight of service i towards
node j and bi is the rate of request blocking for service i.
Similarly, li denotes the offered load and lci denotes the carried
load, which is computed by lci = li(1 − bi). Moreover, ui

denotes the utility of service i (e.g. the business value of
service i). Lastly, di denotes the response time and Oi denotes
the response time objective.

We focus on the following three management objectives.
Management Objective 1 (MO1): the response time of a

request of service i is upper bounded by Oi and the overall
carried load is maximized:

maximize
∑
i

lci while di < Oi (1)

Management Objective 2 (MO2): the response time of a
request of service i is upper bounded by Oi and the sum of
service utilities is maximized:

maximize
∑
i

ui while di < Oi (2)

Management Objective 3 (MO3): the response time of a
request of service i is upper bounded by Oi, the carried load
lci of service i is maximized, while service k is prevented from
starving (i.e., by specifying a lower threshold lmin for service
k):

maximize lci while di < Oi and lck > lmin i ̸= k (3)

For each management objective, we solve the following opti-
mization problem. Given the offered load of service i, and the
response time di, we need to find the control parameters pij
and bi that meet the management objectives. We obtain these
parameters through the RL approach shown in Fig. 3.

Following the RL approach, we formalize the above op-
timization problem as a Markov Decision Process (MDP)
M = ⟨S,A,Pa

ss′ ,Ra
ss′ , γ, ρ1, T ⟩, which is a well-understood

model for sequential decision making [7]. The elements of this
formalization are defined in our previous work [3].

Our method for solving the MDP and obtaining near-
optimal policies includes three procedures. First, we learn a
system model using data collected from the testbed. We then
use the system model to instantiate a simulator of our testbed.
Lastly, we train control policies offline on the simulator
through the Proximal Policy Optimization (PPO) RL algorithm
and implement the learned policies in the management system.

The management system monitors the testbed through sys-
tem metrics and runs control policies that perform manage-
ment actions. The system is written in Bash and Python.
The user interface is based on matpotlib and the monitoring
pipeline is based on Prometheus and a custom HTTP client.
The RL algorithms are implemented using stable-baselines3
and the method for learning the system model is based on
Sklearn.

IV. TESTBED

To demonstrate our system, we use a testbed at KTH that
includes a server cluster connected through a Gigabit Ethernet
switch (see Fig. 3). The cluster contains nine Dell PowerEdge
R715 2U servers, each with 64 GB RAM, two 12-core AMD
Opteron processors, a 500 GB hard disk, and four 1 Gb
network interfaces. The tenth machine is a Dell PowerEdge
R630 2U with 256 GB RAM, two 12-core Intel Xeon E5-
2680 processors, two 1.2 TB hard disks, and twelve 1 Gb
network interfaces. All machines run Ubuntu Server 18.04.6
64 bits and their clocks are synchronized through NTP. The
orchestration layer and the service mesh are realized using
Kubernetes (K8) and Istio.

On top of the Istio service mesh, we implemented two
information services, which we call service 1 and service 2.
Both services, upon receiving a request with a key, return
a corresponding data item from a database. The difference
between the services is the structure of data items and the
size of the databases.

Fig. 3. Our reinforcement learning framework for learning and evaluating
control policies of the management system; the KTH testbed implements
a service mesh based on Kubernetes and Istio; control policies and system
models are learned based on data from the testbed; the management system
executes learned control policies; the learned policies take dynamic actions
on the testbed based on monitored metrics to meet management objectives.

Figure 1 shows the implementation of the services on the
testbed. All nodes are implemented in Python using Flask. The
front node provides the web user interface and the other two
nodes provide the content for the information service. Each
processing node is implemented as a Kubernetes pod.

We implemented a load generator in order to emulate a
client population. It is driven by a stochastic process that
creates a stream of service requests. We realize two load
patterns with this generator.

The random load pattern produces a stream of requests at
the rate of li(t) ∼ U{5,10,15,20} requests/second. It changes at
every time step to a value drawn uniformly at random from
{5, 10, 15, 20}. A time step is 5 seconds on the testbed.

The sinusoidal load pattern produces a stream of requests
at the rate of li(t) = 12.5+7.5×sin(2πT t+ϕ) requests/second.

REFERENCES

[1] S. Alnajdi et al., “A survey on resource allocation in cloud computing,”
International Journal on Cloud Computing: Services and Architecture
(IJCCSA), 2016.

[2] T.-T. Nguyen et al., “Horizontal pod autoscaling in kubernetes for elastic
container orchestration,” Sensors, 2020.

[3] F. S. Samani and R. Stadler, “Dynamically meeting performance objec-
tives for multiple services on a service mesh,” in 2022 18th International
Conference on Network and Service Management (CNSM). IEEE, 2022.

[4] Kubernetes community, “Production-grade container orchestration,” 2014.
[Online]. Available at: https://kubernetes.io/, Accessed on: June 7, 2022.

[5] Istio community, “Istio homepage,” https://istio.io/.
[6] F. Shahab Samani and K. Hammar, “Software framework for

a management system based on RL,” https://github.com/foroughsh/
Framework-for-dynamically-meeting-performanc-objectives, 2022.

[7] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

