
A System for Interactive Examination
of Learned Security Policies

Kim Hammar †‡ and Rolf Stadler†‡
† Division of Network and Systems Engineering, KTH Royal Institute of Technology, Sweden

‡ KTH Center for Cyber Defense and Information Security, Sweden
Email: {kimham, stadler}@kth.se

March 10, 2022

Abstract—We present a system for interactive examination of
learned security policies. It allows a user to traverse episodes of
Markov decision processes in a controlled manner and to track
the actions triggered by security policies. Similar to a software
debugger, a user can continue or or halt an episode at any
time step and inspect parameters and probability distributions
of interest. The system enables insight into the structure of a
given policy and in the behavior of a policy in edge cases. We
demonstrate the system with a network intrusion use case. We
examine the evolution of an IT infrastructure’s state and the
actions prescribed by security policies while an attack occurs.
The policies for the demonstration have been obtained through
a reinforcement learning approach that includes a simulation
system where policies are incrementally learned and an emulation
system that produces statistics that drive the simulation runs.

Index Terms—Network security, automation, reinforcement
learning, Markov decision processes, MDP, POMDP.

I. INTRODUCTION

An organization’s security strategy has traditionally been
defined, implemented, and updated by domain experts [1].
Although this approach can provide basic security for an
organization’s communication and computing infrastructure,
a growing concern is that infrastructure update cycles become
shorter and attacks increase in sophistication. Consequently,
the security requirements become increasingly difficult to
meet. To address this challenge, significant efforts have started
to automate security frameworks and the process of obtaining
effective security policies. Examples of this research include:
computation of security policies using dynamic programming
and control theory; computation of exploits and correspond-
ing defenses through evolutionary methods; computation of
security policies through game-theoretic methods; and use of
machine learning techniques to estimate model parameters and
policies [2], [3], [4], [5].

A promising direction of recent research is automati-
cally learning security policies through reinforcement learning
methods (see survey [2]). This paper builds on our earlier work
in this area [3], [4], [5]. In this line of research, the problem
of finding a security policy is generally modeled as a Markov
decision problem and policies are learned through simulation.
Following this approach, the learned policies are evaluated by
metrics that are aggregated over a large number of simulation
runs. This kind of of evaluation provides a useful, overall,

Attacker Clients

. . .

Defender

1 IDS1

alerts

Gateway

7 8 9 10 1165432

12

13 14 15 16

17

18

19

21

23

20

22

24

25 26

27 28 29 30 31

Fig. 1: The IT infrastructure and the actors in the intrusion
prevention use case: an attacker, a client population, and a
defender.

assessment of the policies’ performance, but it is incomplete.
For instance, it does not explain the structural differences
between effective and non-effective policies. Also, it does not
give insight into the behavior of policies in edge-cases, which
is vital to understand before deploying security policies in
practice.

In this demo paper, we describe a system that complements
quantitative evaluations of learned security policies by allow-
ing a user to interactively inspect the behavior of policies in
different states and against different attackers. We demonstrate
that the system enables insight into the structure of a given
policy and in the behavior of a policy in edge cases. We
also open-source the code [6], explain the implementation,
and describe our reinforcement learning approach for finding
security policies.

II. THE INTRUSION PREVENTION USE CASE

We demonstrate the system with an intrusion prevention use
case (see Fig. 1). Here, we use the term ”intrusion prevention”
as suggested in the literature, e.g. in [1]. It means that a
defender prevents an attacker from reaching its goal, rather978-1-6654-0601-7/22/$31.00 c© 2022 IEEE

s1,1 s1,2 s1,3 . . . s1,n

s2,1 s2,2 s2,3 . . . s2,n

...

EMULATION SYSTEM

TARGET

INFRASTRUCTURE

Model
Estimation

Policy Mapping
π

Selective
Replication

Policy
Implementation π

SIMULATION SYSTEM
POMDP model &

Reinforcement Learning

Policy evaluation &
Model estimation

Automated
security policy

Fig. 2: Our framework for learning and evaluating security
policies.

than preventing it from accessing any part of the infrastructure.

The use case involves the IT infrastructure of an organi-
zation (see Fig. 1). The operator of this infrastructure, which
we call the defender, takes measures to protect it against an
attacker while, at the same time, providing a service to a client
population. The infrastructure includes a set of servers that run
the service and an intrusion detection system (IDS) that logs
events in real-time. Clients access the service through a public
gateway, which also is open to the attacker.

We assume that the attacker intrudes into the infrastructure
through the gateway, performs reconnaissance, and exploits
found vulnerabilities, while the defender continuously mon-
itors the infrastructure through accessing and analyzing IDS
statistics and login attempts at the servers.

In our demonstration, we assume that the defender can take
a fixed number of actions, each of which has a cost. An
example of such an action is to update the firewall of the
gateway. When deciding on an action, the defender balances
two objectives: (i) maintaining service to its clients; and (ii),
keeping a possible attacker out of the infrastructure.

For simulation of the use case and formal analysis, we
model it with a Partially Observed Markov Decision Process
(POMDP) [5], [4]. The POMDP evolves in discrete time-steps:
t = 1, . . . , T . The states st ∈ S and observations ot ∈ O of the
POMDP represent the infrastructure’s states and the defender’s
observations, respectively. The defender policy πθ(at|ht) de-
termines the actions at ∈ A that the defender takes after
observing the history ht = (ρ1, a1, o1, . . . , at−1, ot), where
ρ1 is the initial state distribution.

III. AUTOMATED LEARNING OF SECURITY POLICIES

We integrate the system for interactive examination of
learned security policies with a reinforcement learning frame-
work for learning security policies that we developed in our
previous work [3], [5], [4]. Our framework includes two
systems (see Fig. 2). First, we use an emulation system where
key functional components of the target infrastructure are
replicated. This system closely approximates the functionality
of the target infrastructure and is used to run attack scenarios

Client web browser

Policy Examination

JavaScript frontend

Flask HTTP server

PostgreSQL

Traces Policy πθ
Emulation Simulation

s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

...

Fig. 3: Architecture of the system for inspecting and examining
learned security policies.

and defender responses. These runs produce system metrics
and logs that we use to estimate distributions of infrastructure
metrics. We then use the estimated distributions to instantiate a
POMDP. Second, we use a simulation system where POMDP
episodes are simulated and policies are incrementally learned.
After learning policies, they are extracted from the simulation
system and evaluated in the emulation system. Using this
approach, the emulation system provides the statistics needed
to simulate the use case and to evaluate the learned policies,
whereas the simulation system automatically learns policies
through reinforcement learning in an efficient manner.

IV. THE SYSTEM FOR INTERACTIVE POLICY
EXAMINATION

The architecture of the system for policy examination is
shown in Fig. 3. The system provides an interface to inspect
learned policies either from emulation traces or from simulat-
ing a POMDP. Users access the system through a web browser
where they can interactively step through a POMDP episode.
At each step, the users can inspect relevant parameters and
probability distributions.

V. IMPLEMENTATION

The web interface is implemented in JavaScript using the
React framework (see Fig. 3). It makes requests to an HTTP
server written in Python based on the Flask framework, which
provides a REST API that can be queried to fetch data and to
make policy predictions. The data on the server is collected
from the emulation system and is stored in a PostgreSQL
database. The policy is extracted from the simulation system
and is stored in the main memory of the server.

The emulation system executes on a cluster of machines that
runs a virtualization layer provided by Docker [7] containers
and virtual connections. It implements network isolation and
traffic shaping on the containers using network namespaces
and the NetEm module in the Linux kernel. Resource con-
straints of the containers, e.g. CPU and memory constraints,

Fig. 4: The demonstration view of the system which allows the user to interactively step through a POMDP episode.

are enforced using cgroups. The software running in the
containers replicates important components of the target in-
frastructure, such as, web servers, databases, and an IDS.

The defender policy πθ(a|h) is represented by a neural
network that takes infrastructure metrics h as input and outputs
a probability distribution over actions a ∈ A.

The simulation system is written in Python, and the policy
training is performed using the Proximal Policy Optimization
(PPO) algorithm, which we have implemented using the
PyTorch auto-differentiation library.

VI. DEMONSTRATION

We demonstrate the system by interactively stepping
through a POMDP episode of the intrusion prevention use
case. The POMDP is traversed based on traces and a defender
policy, which were obtained through the reinforcement learn-
ing method described in Section III.

Figure 4 pictures the main user interface of the system. The
left part of the interface shows the defender’s view and the
right part shows the attacker’s view. The plot on the upper
left shows the defender’s belief about the infrastructure’s state
and the probability that the defender takes an action at each
time-step. The plot on the lower left shows the distribution of
infrastructure metrics that the defender observes. The graphic
on the right shows the attacker’s view, depicted as an overlay
on the IT-infrastructure’s topology.

The demonstration provides insight into the structure of the
defender policy and its behavior in edge-cases. We observe
correlations among the attacker’s actions, the infrastructure

metrics, and the actions that the defender policy prescribes.
We also examine which actions of the attacker are difficult
for the defender to detect or trigger actions by the defender.

For example, we can observe that if the attacker performs
reconnaissance by executing a port scan, there is a spike
in infrastructure metrics, which causes a defensive action
with a high probability. If the attacker uses other means of
reconnaissance, e.g. a ping scan, we can observe that the
defender will not detect it since no change in infrastructure
metrics is generated. Finally, we can discover an edge-case
where the defender policy mistakes regular client traffic for
an attacker and wrongly takes defensive actions. This happens,
for instance, if the attacker is passive for a long time.

REFERENCES

[1] A. Fuchsberger, “Intrusion detection systems and intrusion prevention
systems,” Inf. Secur. Tech. Rep., vol. 10, no. 3, p. 134–139, Jan. 2005.

[2] N.Dhir et al., “Prospective artificial intelligence approaches for active
cyber defence,” 2021.

[3] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and Self-Play,” in International Conference on
Network and Service Management (CNSM 2020), Izmir, Turkey, 2020.

[4] ——, “Learning intrusion prevention policies through optimal stopping,”
in International Conference on Network and Service Management (CNSM
2021), Izmir, Turkey, 2021, https://arxiv.org/pdf/2106.07160.pdf.

[5] ——, “Intrusion prevention through optimal stopping,” 2021,
https://arxiv.org/abs/2111.00289.

[6] ——, “automated-intrusion-prevention-dashboard,” 2022, https://github.
com/Limmen/automated-intrusion-prevention-dashboard.

[7] D. Merkel, “Docker: lightweight linux containers for consistent develop-
ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

