

Degree Project in Applied and Computational Mathematics

Second cycle, 30 credits

Self-Play Reinforcement Learning

for Finding Intrusion Prevention

Strategies

JAKOB STYMNE

Stockholm, Sweden 2022

Abstract | i

Abstract
This Master thesis studies automated intrusion prevention using self-play
reinforcement learning. We extend a decision-theoretic model of the intrusion
prevention use case based on optimal stopping theory proposed in previous
work to a game-theoretic setting. We model the use case as a zero-sum
onesided partially observed stochastic game where the defender’s stop actions
determine the times to take defensive actions and the attacker’s stop actions
determine when to attack. To find optimal defender strategies, we use
multi-agent reinforcement learning. In a novel approach, we extend the
Neural Fictitious Self-Play algorithm to partially observed stochastic games.
With this approach, we narrow the gap between the theoretical framework
of partially observed stochastic games and the framework of model-free
reinforcement learning. We show that the learned strategies converge near
a Nash equilibrium. Inspection of the converged strategies shows that they
imitate human strategies but are heavily dependent on hyperparameters and
the reward function.

Keywords
Network security, automation, reinforcement learning, Markov Security Games,
Neural Fictitious Self Play

ii | Sammanfattning

Sammanfattning
Svensk titel: Självspelsförstärkningsinlärning för att hitta intrångsförebyggande
strategier

Detta examensarbete handlar om att automatisera intrångsförebyggande strategier
genom att använda självspelsförstärkningsinlärning. Vi bygger vidare på en
beslutsteoretisk modell av det intrångsförebyggande användningsfallet baserad
på optimal stoppteori föreslagit i tidigare arbeten, till en spelteoretisk situation.
Närmare bestämt så väljer vi att modellera användningsfallet som ett stokastiskt
nollsummespel med ensidig partiell observabilitet, där försvararens stoppaktioner
motsvarar tidpunkterna för att ta försvarande aktioner och anfallarens stoppaktioner
motsvarar tiden för att starta anfallet. För att hitta optimala försvarsstrategier så
använder vi oss av multi-agent förstärkningsinlärning. Med ett nytt tillvägagångssätt
använder vi algoritmen Neural Fictitious Self Play för partiellt observerbara
spel. Med detta tillvägagångssätt så minskar vi gapet mellan det teoretiska
ramverket för partiellt observerbara stokastiska spel och modellfri förstärkningsinlärning.
Vi visar att de inlärda strategierna konvergerar mot en Nashjämvikt. Närmre
inspektion av de konvergerade strategierna visar att dem imiterar mänskligt
beteende, men är mycket beroende av hyperparametrar och belöningsfunktionen.

Nyckelord
Nätverkssäkerhet, automatisering, förstärkningsinlärning, Markovianska säkerhetsspel,
Neural Fictitious Self Play

Acknowledgments | iii

Acknowledgments
First and foremost I would like to thank my supervisors Kim Hammar and
Rolf Stadler for their help during the work with this thesis. I specifically
want to thank Kim for constantly being available to answer questions and
for interesting discussions. Kim helped provide parts of the text for the
mathematical background (Section 3.2), helped me formalize the game model
(Chapter 4) and helped with coding issues. For the theoretical Section 4.7,
Kim and I collaborated to derive the proofs. Furthermore I would like to thank
my examiner Jimmy Olsson for constructive feedback during the course of the
project.

Stockholm, June 2022
Jakob Stymne

iv | Acknowledgments

CONTENTS | v

Contents

1 Introduction 1
1.1 Related Work . 2
1.2 Problem and Research Questions 3
1.3 Methodology for Analysis 4
1.4 Scope and Limitations . 4
1.5 Contributions . 5
1.6 Report Outline . 5

2 The Intrusion Prevention Use Case 7
2.1 Basic Concepts of Computer Security 7
2.2 Description of the Use Case 8

3 Game Theoretical Framework 11
3.1 Introduction to Noncooperative Game Theory 11

3.1.1 Game Representations: Normal Form and Extensive
Form . 11

3.1.2 Solution Concepts: Strategies, Best Response and
Nash Equilibrium . 13

3.1.3 Maxmin, Minmax, and Value of a Zero-sum Game . . 15
3.2 Stochastic games and Partial Observability 16

3.2.1 Partially Observed Stochastic Games (POSGs) 17
3.2.2 Belief States and One-sided POSGs 18
3.2.3 Solving for Best Response Strategies in POSGs 19
3.2.4 Computing Nash Equilibria in POSGs 21

4 Modeling the Use Case with Game Theory 23
4.1 Intrusion Prevention through Optimal Stopping 23
4.2 Game Structure . 24
4.3 Actions A and Reward FunctionR(st, (a(1)t , a

(2)
t)) 24

4.4 Transition Operator T and Time Horizon T∅ 26

vi | CONTENTS

4.5 ObservationsO and Observation FunctionZ(ot+1, st+1, (a
(1)
t , a

(2)
t)) 27

4.6 Strategy Space Π and Objective 28
4.7 Game-Theoretic Analysis of the Intrusion Prevention Game

Model . 29

5 Finding Automated Strategies using Reinforcement Learning 32
5.1 Reinforcement Learning . 32

5.1.1 Q-learning . 34
5.1.2 Deep Q-networks . 35
5.1.3 Single-agent versus Multi-agent Reinforcement Learning

Algorithms . 36
5.2 Fictitious Play, Fictitious Self Play and Neural Fictitious Self

Play . 37
5.3 Choice and Implementation of Main Algorithm 39
5.4 Evaluation of Multi-Agent RL Algorithms 42

5.4.1 Exploitability . 42
5.4.2 Approximate Best Response and Approximate Exploitability 43
5.4.3 Approximation of Average Episode Reward and Value

of the Game . 44

6 Experiment Setup and Results 47
6.1 Analysis of the Intrusion Game with Limited Observation Space 48

6.1.1 Observation Function 49
6.1.2 Learning Nash Equilibria in the Intrusion Prevention

Game . 49
6.1.3 Characterization of the Learned Nash Equilibrium . . 54

6.2 Analysis of Game with Data Observations from Emulation . . 56
6.2.1 Observation Function 57
6.2.2 Learning Nash Equilibria 57
6.2.3 Comparison of Learned Strategies with Base Case . . 58

7 Discussion and Conclusion 61
7.1 Discussion of Results . 61
7.2 Future Work . 63
7.3 Conclusion . 64

References 65

A Extensive Form Representation of the Game Model 73

Contents | vii

B Proof of Properties of the Intrusion Prevention Game 75
B.1 Proof of Theorem 4.7.1 B. 75
B.2 Proof of Theorem 4.7.1 C. 76

viii | Contents

Introduction | 1

Chapter 1

Introduction

In the last few years, cyber attacks against organizations, companies, and even
governments have become commonplace. Recent examples are the "Kayesa"
hacking attack which forced Swedish supermarket Coop to close all its stores,
as well as the hacking attack against the Ukrainian government websites in
January 2022, warning Ukrainians to "prepare for the worst".

Some of the key findings of the report “Global Cyber Security Outlook
2022” from the World Economic Forum [1], in which 120 global cyber leaders
were interviewed, include:

• In 2021, the ransomware attacks have increased by 151%.

• Each organization faced 270 cyber-attacks on an average.

• 45% of organizations have been affected by a third-party cyber attack in
the past 2 years

• 48% of leaders say that "Automation and machine learning" is expected
to have the greatest influence on transforming cyber security in the next
two years

Hence, cyber security is becoming increasingly important in the modern and
digitalized era. Current cyber security solutions, however, are largely based on
heuristics and manual configurations. As cyber attacks are getting increasingly
automated and sophisticated, there is a need to complement current security
solutions with automated security. A promising framework for automating
cyber security tasks is reinforcement learning, where security strategies are
learned through interaction with an environment and analyzed theoretically
using game theory and decision theory. This master thesis project makes a
contribution in this context.

2 | Introduction

In this master thesis, we consider an intrusion prevention use case involving
an IT infrastructure. It involves two actors: an IT operator, who defends
the infrastructure, while maintaining service to the client population, and an
attacker, who is trying to intrude the infrastructure and avoid getting detected
by the defender. The optimal strategy of the IT operator is to maximize the
provided service to the client population and to prevent a possible hacking
attack at minimum cost.

Previous work on the intrusion prevention use case shows that automated
defense strategies for simplified environments can be learned effectively using
reinforcement learning and self play [2]. In this line of work, the use case
is modeled as a Markov game or Markov decision process and simulations of
the game are used to learn optimal defense and attack strategies simultaneously
based on experience from played games. One model that has been proposed is
[3], where the intrusion prevention use case is formulated as a multiple optimal
stopping problem and optimal defender strategies against static attackers are
learned through reinforcement learning. In this formulation, each defensive
action is associated with a stopping action and insight into the structure of
optimal strategies is obtained through the theory of optimal stopping. In this
project, we extend [3] to a game-theoretic setting by considering a dynamic
attacker.

Our goal is to analyze and find optimal defense strategies for the intrusion
prevention use case. With an optimal defender strategy we mean a strategy
that guarantees some minimum level of reward for the defender agent, even in
the case of a worst-case attacker who plays optimally. In game-theoretical
terms, this means that we are looking to find a Nash equilibrium, where
both the attacking and defender player are playing the best-response strategies
against their opponent. To obtain the Nash equilibrium strategies, two main
methods can be used: computational game theory and reinforcement learning.
In our use case, most of the algorithms from computational game theory are
either intractable to apply or make strong assumptions. Therefore, we use
a reinforcement learning approach where Nash equilibrium strategies of the
attacker and defender are learned in an iterative fashion. Ultimately, this
project lies at the intersection of reinforcement learning and game theory,
where reinforcement learning is used to solve a game theoretical problem.

1.1 Related Work
The goal of finding automated security strategies has gained increased attention
in recent years and has been studied by many different fields and points

Introduction | 3

of views, for example using reinforcement learning, game theory, dynamic
programming, control theory, attack graphs, statistical tests, and evolutionary
computation.

The main references for this thesis project are the previous work done by
Kim Hammar and Rolf Stadler, [2, 3, 4, 5]. These works study the same
intrusion prevention use case as in this thesis and formulates the use case as
an intrusion prevention problem. These works are the first to study self-play
in the context of networks and systems security, and the first to formulate the
use case as an optimal stopping problem. The stochastic game model studied
in this project is a direct extension of the models formulated in these works.
In this project, we extend the referenced works by considering the case of a
dynamic attacker who adapts their strategy to the defender. Other work that
use reinforcement learning for finding security strategies include [6], [7], and
[8], all of which focus on single-agent reinforcement learning and different use
cases than ours.

In another line of work, game theory is used to find and analyze automated
security strategies [9, 10, 11]. In one survey from 2013 [12], roughly 20
different security or privacy problems which are formulated as games are
listed, with different outcomes such as optimal defense strategies, equilibrium
analysis and performance limits. When looking at available security games
in the literature, there are many different classes of games. This includes
for example games related to Distributed Denial-of-Service (DDoS) [13, 14],
resource allocation games [15], and intrusion prevention games [16, 2, 17,
18, 19, 20]. However, few of the game-theoretical approaches to intrusion
prevention use reinforcement learning, and to the best of our knowledge, there
are none which uses neural fictitious self play, which is the algorithm studied
in this thesis.

Lastly, in this thesis, we implement the Neural Fictitious Self Play (NFSP)
[21] algorithm, which in turn is an extension of fictious self play [22] and
fictitious play [23]. The NFSP algorithm implemented in this thesis extends
the original algorithm by including the use of beliefs. Other algorithms
for multi-agent reinforcement learning are Policy-Space Response Oracle
algorithm [24] and Alpha-Zero [25]. For an overview of available algorithms
and challenges of multi-agent reinforcement learning, we refer to [26] and [27].

1.2 Problem and Research Questions
We study the use case of intrusion prevention and the problem of obtaining
automated security strategies. Traditional approaches to intrusion prevention

4 | Introduction

use packet inspection and static rules for detection of intrusions and selection
of response actions. Their main drawback lies in the need for domain experts
to configure the rule sets. Therefore, a promising research direction is to
develop methods for automatically obtaining security strategies, which would
reduce the need for domain experts. We investigate this research direction
using reinforcement learning and analyze the optimal security strategies using
game theory. Our main research questions are:

1. How can the intrusion prevention use case be modeled as a game?
Ideally, the model should have the following properties:

• Captures relevant properties of practical IT infrastructures.

• Analytically tractable when scaled down.

• Can be scaled up to realistic use cases.

2. What structural insights can be derived for the model?

• Does there exist a Nash equilibrium? Pure or mixed?

• Does an optimal intrusion prevention strategy with specific structure
exist?

3. Which reinforcement learning algorithms and/or game-theoretic methods
are suitable for computing automated intrusion prevention strategies for
the given model?

1.3 Methodology for Analysis
The project follows a quantitative research methodology. Theories are developed
and tested empirically. Specifically, game theory and Markov decision theory
are used to model the intrusion prevention use case and analyze optimal
strategies. Simulations are used to evaluate computational algorithms, e.g.
rates of convergence and solution quality. Finally, a testbed at KTH is used to
run experiments and collect empirical results that complement the numerical
simulations.

1.4 Scope and Limitations
We limit the scope of this thesis to studying a specific use case in network
security, namely intrusion prevention. The observations generated by the

Introduction | 5

attacker actions are based on intuitive attacker characteristics or data traces
from simulated hacking attacks against the KTH servers. One central concept
is the notion of belief, which is a measure of how likely the defender think there
is an ongoing intrusion. We limit the analysis of the game to the case when
both the defender and the worst-case attacker take this probabilistic belief into
consideration, which could be considered an oversimplification of the behavior
of the agents. Furthermore, we focus on one specific implementation of a
multi-agent reinforcement learning algorithm, which is the Neural Fictitious
Self Play.

1.5 Contributions
We make two main contributions. Firstly, we combine the approaches of
multi-agent self play using reinforcement learning and the optimal stopping
formulation of the use case. Specifically, we extend the optimal stopping
intrusion prevention model proposed in [3] to the case with two intelligent
agents (see Chapter 4).

Secondly, we apply the Neural Fictitious Self Play (NFSP) algorithm
to learn security strategies. NFSP has previously mainly been used for
card games, so this is a new application of the algorithm. To get a NFSP
implementation that works with the implemented partially-observed game
model, we had to make some modifications to the original implementation,
using insights from [28]. Specifically, the belief distributions of the defender
had to be calculated as each time step. This proposed modification, which is
described in Chapter 5, is a novel approach how to apply beliefs in NFSP. Our
results (found in Chapter 6) show that NFSP successfully can be used to find
optimal stopping defense strategies.

1.6 Report Outline
The thesis is structured as follows. In Chapter 2 we describe the intrusion
prevention use case. In the next chapter, Chapter 3, we define the necessary
mathematical framework of game theory. The next Chapter, 4, formalizes the
model using game theory. Chapter 5 describes reinforcement learning and
our implementation of Neural Fictitious Self Play as well as the evaluation
procedures. Chapter 6 presents the general experiment setup and the results
of the experiments. The results are discussed and the conclusion of the thesis
is presented in Chapter 7.

6 | Introduction

The Intrusion Prevention Use Case | 7

Chapter 2

The Intrusion Prevention Use Case

In this chapter, we describe the intrusion prevention use case. First, we
give a basic introduction to network security. Since the focus of this report
is mathematical, the background on network security is rather limited. We
describe the necessary components to define the intrusion prevention use
case as a stochastic game, such as the anatomy of a cyber attack as well
as the description of Intrusion Detection Systems and Intrusion Prevention
Systems. Using this basic domain knowledge, we elaborate on how we define
the intrusion prevention use case.

2.1 Basic Concepts of Computer Security
NIST defines computer security as "The protection afforded to an automated
information system in order to attain the applicable objectives of preserving
the integrity, availability, and confidentiality of information system resources
(includes hardware, software, firmware, information/ data, and telecommunications)"
[29]. This definition outlines the three main objectives of a computer security
system: integrity, availability and confidentiality. Integrity means a system
works in the way they are intended, and that information and programs in the
systems are changed only in a specified and authorized manner. Availability
means service is not denied to authorized users. Confidentiality means that
confidential information and data should be kept private to unauthorized
individuals. When constructing optimal automated intrusion defense strategies,
we want to find these strategies in a manner so that all three of these objectives
are taken into account.

In a review conducted by FOI, five different stages of an AI-supported
cyberattack was identified in the literature; Reconnaissance; Access and

8 | The Intrusion Prevention Use Case

penetration; Internal reconnaissance and lateral movements; Command,
control, and actions on objectives; and Exfiltration and sanitation [30].

Reconnaissance is the process of research before the intrusion starts, when
the hacker collects intelligence on how the system can be hacked. Access is the
means by which a hacking attacker uses the knowledge to penetrate the target
infrastructure. Internal reconnaissance and lateral movement is collection
of intelligence once the agent is within the system. Command, control and
actions on objectives occur once the attacker agent has established itself within
the IT network. These objective could include stealing data or manipulating
data, or damaging system functions. Exfiltration and sanitation is the last step
of the hacking attack, when the attacker removes itself from the infrastructure.
As we are trying to simulate an AI-supported hacking attack in our intrusion
prevention use case game model, these different stages of the attack should be
included in some sense.

An Intrusion Detection System (IDS) is a device or software that monitors
for malicious activities and generates alerts when they are detected. The
intrusion detection works by monitoring for irregularities. An Intrusion
Prevention System (IPS) is a further development of the IDS. The IPS can
be defined as an system that detects and blocks malicious network activity in
real time.

2.2 Description of the Use Case
We consider an intrusion prevention use case that involves the IT infrastructure
of an organization. The use case is almost identical to the one defined in [3].
Therefore, we refer to this article for a more elaborate description. Here, we
will summarize it briefly.

The operator (defender) of the IT infrastructure has two main objectives:
providing service to the client population, while defending it against hacker
attacks. The defender can monitor the system using an IDS that logs events in
real time. For a schematic visualization, we refer to Figure 2.1.

The attacker’s goal is to intrude on the infrastructure and compromise a
set of its servers. To achieve this, the attacker must explore the infrastructure
through reconnaissance and exploit vulnerabilities, while, at the same time,
avoid getting detected by the defender. The attacker decides the time to start
the intrusion and may also decide to abort an ongoing intrusion at any moment.
During the intrusion, it is assumed that the attacker follows a fixed sequence
of commands. When deciding on the time to start and stop the intrusion, the
attacker must consider both the gain of compromising additional servers in the

The Intrusion Prevention Use Case | 9

Figure 2.1: The IT infrastructure and the actors in the use case. Courtesy of
Kim Hammar.

infrastructure and the risk of getting detected by the defender.
The defender continuously monitors the infrastructure through accessing

and analyzing IDS statistics and login attempts at the servers. The defender can
then take different defensive actions. These could be for example resetting user
accounts, updating firewall configurations or ultimately blocking all external
access. These actions comes with a cost, and the defender starts by taking
the actions which has the lowest cost. The defender is trying to both maintain
service as long as possible, but then shut out the attacker as fast as possible
with minimal cost when the intrusion starts. Therefore, the objective for the
defender is to find the optimal time to take the defensive actions.

We want to study the use case from a game-theoretic perspective and model
the use case as a zero-sum game. The reward function of this game encodes the
defender’s benefit of maintaining service and its loss of being intruded. Hence,
the defender seeks to maximize reward and the attacker wants to minimize it.

10 | The Intrusion Prevention Use Case

Game Theoretical Framework | 11

Chapter 3

Game Theoretical Framework

In this project, we model the intrusion prevention use case as a game.
This section covers the necessary mathematical background and notation
on noncooperative game theory, stochastic games, and partially observed
stochastic games.

3.1 Introduction to Noncooperative Game Theory
Game theory contains analytical tools and concepts to study the optimal
behavior when several decision-taking actors are involved in strategic interactions.
In this context, an actor is an agent that is situated in an environment and acts
autonomously to reach a defined goal. It is able to perceive its environment
and able to react to observations and observed changes in the environment. It
can also evaluate the current state of the environment (for example using some
kind of utility function), and choose an action so that its utility is maximized.

3.1.1 Game Representations: Normal Form and Extensive
Form

There are many different possible representations for games. The normal form
game, sometimes called a matrix representation, could be considered the most
basic one.

Definition 3.1.1 (Normal form game). We define a normal form game as a
triplet

G = ⟨N , (Ai)i∈N , (ui)i∈N ⟩

12 | Game Theoretical Framework

whereN is a finite set of players, (Ai)i∈N denotes the sets of actions of players
1, . . . , |N |, and (ui)i∈N denotes the utility functions for players i ∈ N , where
ui :

∏
i∈N Ai → R.

Normal form games can be classified as zero-sum games and nonzero-sum
games. A two-player zero-sum game is a game where the total utility of any
combination of actions is zero, meaning that the gain of one player results in
the loss of one player.

Player 2
Rock Paper Scissors

Rock (0, 0) (−1, 1) (1,−1)
Player 1 Paper (1,−1) (0, 0) (−1, 1)

Scissors (−1, 1) (1,−1) (0, 0)

Figure 3.1: Example of rock-paper-scissors, a two player zero-sum normal
form game. The first value in each cell corresponds to the utility of the row
player; the second that of the column player.

A normal form game representation is limited due to the fact that it only
shows "one-shot" of the game. Oftentimes, we study sequential games, where
agents dynamically play several rounds of the game against each other. In this
type of dynamic game, we want to have a representation which reflects all
possible situations that can be encountered in the game, including stochastic
events and moves by the opponents. One representation of dynamic games
is the extensive form representation. See Figure 3.2 for an example of such a
representation.

Extensive form games can be classified as perfect information games and
imperfect information games are used. In an imperfect information game, a
player might not be able to observe the state of the game perfectly; the states
that are not distinguishable belong to the same information set. A special case
of the game is the repeated game, where the same normal form game, called
the stage game, is played repeatedly.

Any extensive form game can be converted to a normal form game,
although the resulting number of utility payoffs is typically exponential in the
number of game states. This means that the normal form representation of a
large extensive game becomes intractably large [31].

Game Theoretical Framework | 13

1

2

3, 2

D

6, 4

C

Z
2

3, 0

X

8, 5

Y

A

4, 6

X

2, 1

Y

B

W

1

Figure 3.2: Example of a game with two players (1, 2). After player 1 makes
decision W, player 2 can either make decision A or B. These two decisions are
indistinguishable for player 1 (marked by the dashed line), and thus belong to
the same information set.

3.1.2 Solution Concepts: Strategies, Best Response
and Nash Equilibrium

The actions that an agent takes in a game is defined by its strategy. A strategy
is a complete plan for playing the game, describing how the agent should
act in every possible situation in the game. A strategy profile is a vector
of strategies for all agents and can be defined as π = ⟨π1, . . . , πn⟩ ∈ Π.
The strategy profile for all agents except agent i can be defined as π−i =

⟨π1, π2, . . . , πi−1, πi+1, . . . , πn⟩.
Take for example the game in Figure 3.2. In this case, player 1 has two

choices, Z/W and X/Y (if he chooses W as a first choice). Player 2 also 2
choices: D/C, if player 1 chooses Z; A/B, if player 1 chooses W. The possible
strategies and an example of a strategy profile in this game are:

π1 = {(Z,X), (Z, Y), (W,X), (W,Y)}
π2 = {(D,A), (D,B), (C,A), (C,B)}
π = ⟨π1, π2⟩, for example π = ⟨(Z,X), (D,A)⟩.

Notice that some strategies are redundant and impossible to reach, such as
π1 = (Z,X). However these are still part of the strategy set.

The objective of each agent is to maximize its utility. We say that a strategy

14 | Game Theoretical Framework

is a best response for player i against the opponents’ strategies if it maximizes
the utility against those strategies.

Definition 3.1.2 (Best response strategy). Let G = ⟨N , (Ai)i∈N , (ui)i∈N ⟩ be
a normal form game. Then the best response strategy for player i π∗

i is the
strategy so that ∀πi ∈ Πi, ui(π

∗
i , π−i) ≥ ui(πi, π−i), i.e. the strategy that gives

the highest utility to player i holding the other players’ strategies π−i fixed.
When π∗

i is a best response strategy against π−i we say that π∗
i ∈ BRi(π−i).

For example, in Figure 3.2, if π2 = π−1 = (D,A) then the best-response
strategy for player 1 π∗

1 is (W,Y) as this yields the highest utility (8) for player
1.

The definition of best response strategies leads us to a solution concept
for noncooperative games; the Nash equilibrium. The Nash equilibrium is the
strategy profile for all agents, where each agent plays the best response against
the other agents’ strategies. In this solution point, no agent can improve his or
her payoff by changing their strategy, meaning that no agent has any incentive
to deviate from their current strategy. We can define the concept formally as:

Definition 3.1.3 (Nash equilibrium). Let G = ⟨N , (Ai)i∈N , (ui)i∈N ⟩ be a
normal form game. Strategy profile π = ⟨π1, . . . , πn⟩ is a Nash equilibrium iff
∀i ∈ N , πi ∈ BRi(π−i).

To illustrate the Nash equilibrium concept, consider the example of the
prisoner’s dilemma. In this example there are two prisoners, locked up in two
separate interrogation rooms. The two prisoners (or agents) can choose to
either betray the other prisoner, or stay silent. If both prisoners betray each
other, both of them serve two years on prison. If one of them betrays while the
other stay silent, the person who betrays is set free but the person who stays
silent gets three tears in prison. If both of them stay silent, they both only serve
one year in prison.

This game can be represented as a two player normal form (matrix) game
as in Figure 3.3.

Prisoner Y
Stay quiet Betray

Prisoner X Stay quiet (−1,−1) (−3, 0)
Betray (0,−3) (−2,−2)

Figure 3.3: The prisoner’s dilemma

In this game, the Nash equilibrium is given by (Betray, Betray) as no
agents has any incentive to deviate. However, both agents would receive less

Game Theoretical Framework | 15

sentences if they both stayed quiet. This example illustrates how game theory
can explain seemingly unintuitive behavior in decision making situations.

We also differentiate between pure and mixed strategies. A pure strategy
is defined as in the last subsection, i.e. a complete description how a player
will play a game for each situation they may face. A mixed strategy is
an assignment of a probability to each pure strategy. One can see it as a
way to randomly choose among different available strategies to avoid being
predictable.

Definition 3.1.4 (Mixed strategies). Let G = ⟨N , (Ai)i∈N , (ui)i∈N ⟩ be a
normal form game. A mixed strategy is a sequence (πj)

k
j=1 ∈ Πi for player i

and a probability distribution σ = (σj)
k
j=1 where the player i chooses strategy

πj with probability σj .

We can extend the concepts for pure strategies such as best response
and Nash equilibrium for mixed strategies as well. Furthermore, Nash [32]
famously proved the following theorem regarding the existence of equilibrium
points:

Theorem 3.1.1 (Nash [32]). Every game with a finite number of players and
action profiles has at least one Nash equilibrium in mixed strategies.

Consider for example the game of rock-paper-scissor, see the payoff table
in Figure 3.1. Here it is obvious that there exists no pure Nash equilibrium,
since each player always can improve their strategy by changing their next
action to the one that beat the other player’s last action. However, because
of the symmetrical nature of the game, there exists a mixed Nash equilibrium
(1
3
, 1
3
, 1
3
), i.e. the strategy for each player is to randomly choose one of the three

possible actions rock-paper-scissors.

3.1.3 Maxmin, Minmax, and Value of a Zero-sum Game
Playing a Nash strategy does not give any guarantees for the expected payoff.
If we want guarantees, we need to introduce the concept of maxmin-strategy.
The maxmin-strategy is the strategy that guarantees, and maximizes, some
minimum payoff. We can see it as a conservative strategy against a worst-
case opponent. On the other hand, the minmax-strategy is the strategy that
minimizes the opponents’ maximum reward. In the zero-sum game case, von
Neumann [33] proved the following game-theoretical theorem:

Theorem 3.1.2 (von Neumann [33]). In any finite, two-player zero-sum game,
in any Nash equilibrium each player receives a payoff that is equal to both their
maxmin value and the minmax value of the opponent.

16 | Game Theoretical Framework

This theorem has two important implications for this project. Firstly, it
means that we can safely play Nash strategies in zero-sum games, and thus
guarantee some minimum reward. Secondly, it means that all Nash equilibria
have the have the same payoff. By convention, we call the maxmin value,
which in the zero-sum case is the Nash equilibrium value, the value of the
game.

3.2 Stochastic games and Partial Observability
In this project, we build on the formal model for the intrusion prevention use
case developed in [3]. In the referenced work, the use case is modeled using
Markov Decision Theory. Here, we extend the Markov model to the multi-
agent case. In particular, we extend the Markov model to a stochastic game.

A stochastic game is a form of repeated game with several players, and
where the game is set in some environment. In the use case of this project,
the environment constitutes an IT infrastructure. The environment can be
in different states (for example, the IT environment can be in the states of
intrusion or no intrusion). In each time step, each player in the stochastic
game simultaneously choose one action. The environment then transition to
the same or a different state according to some defined transition probabilities,
whereas the agents receive rewards depending on what actions they chose. The
game evolves in discrete time steps from t = 1 to t = T , which constitute one
episode of the game.

The transition probabilities to a new state depend on the current state as
well as the actions, meaning that we can define it as

T at
st,st+1

= T [st+1|st, at] .

This equation has the Markov property, meaning that the probabilities of
the next state is independent of past states given the current state: T [st+1|st] =
T [st+1|s1, . . . , st].

We can denote the rewards for each player as (Ri)i∈N . The reward of player
i at time t is a scalar r(i)t and Ri(st, st+1, at) denotes the expected reward of
player i when transitioning from state st to state st+1 after action profile at is
played (Eq. 3.1)

Ri(st, st+1, at) = E
[
r
(i)
t+1|st, st+1, at

]
. (3.1)

Game Theoretical Framework | 17

The rewards of the game are discounted, meaning that each reward r
(i)
t is

multiplied by a factor γt, γ ∈ (0, 1]. The discount factor γ can be thought of
a measure how much the agent values future returns compared to immediate
returns.

3.2.1 Partially Observed Stochastic Games (POSGs)
In the intrusion prevention use case, the defender does not know exactly
what state of intrusion or no intrusion the IT infrastructure is in. Instead,
the defender can analyze IDS signals from the infrastructure and from these
try to deduct if there is currently an ongoing hacker attack. Mathematically,
this corresponds to saying that the use case is partially observable. A
partially observed stochastic game is a stochastic game where the states
are not directly observable. Instead the players can observe observations
of the game, which are generated by some observation function which has
a probabilistic correlation with the current states and the actions taken by
the players [34, 35, 36, 37]. In the intrusion prevention use case, these
observations correspond to the IDS signals.

We can now formally define the Partially Observed Stochastic Game
(POSG):

Definition 3.2.1 (Partially Observed Stochastic Game). A POSG is defined by
a ten-tuple

ΓP = ⟨N ,S, (Ai)i∈N , T , (Ri)i∈N , (Oi)i∈N ,Z, γ, ρ0, T ⟩

whereN is a finite set of players, S refers to the set of states, and (Ai)i∈N
denotes the sets of actions of players 1, . . . , |N |. The transition function T is
an operator on the set of states and the combined action space of all players,
T : S×(×i∈NAi)→ ∆(S), where (×i∈NAi) = A1×. . .×A|N |. (Ri)i∈N are
the reward functions for players 1, . . . , |N |, whereRi : S×S× (×i∈NAi)→
R.

(Oi)i∈N denote the set of observations of players 1, . . . , |N | andZ(ot+1, st+1, t) =

P[ot+1|st+1, at] is the observation function, where ot+1 ∈ ×i∈NOi, st+1 ∈ S,
and at ∈ ×i∈NAi. Lastly, γ ∈ (0, 1] is the discount factor, ρ0 : S → [0, 1] is
the initial state distribution, and T is the time-horizon.

The game theoretical solution concepts introduced for normal form and
games can also be extended to partially observed stochastic games. This
include the concepts of strategies, strategy profiles, best-response strategies,

18 | Game Theoretical Framework

and Nash equilibrium. Furthermore, every finite-horizon POSG and zero-sum
POSG has a Nash equilibrium [38, 32, 34, 39, 40].

3.2.2 Belief States and One-sided POSGs
Since the players in a POSG cannot observe the exact state the game is in, the
players can instead use the observations ot to form a belief of what current
state the partially observed stochastic game is currently in [41].

A belief state bt ∈ B is a probability distribution over the states, so we can
define the belief of player i at time t, bit ∈ Bi as

b
(i)
t (st,Π−i) = P[st,Π−i|hi

t]

and Bi is the unit (|S × Π−i| − 1)-simplex [42]. For example, if the defender
believes that there is equal probability of the state of intrusion and no intrusion
in some timestep, then the belief is bt = [0.5, 0.5]. The belief a sufficient
statistic of the state st and the strategies of the other players based on player
i’s history hi

t of the initial state distribution, the actions, and its observations:
hi
t = (ρ1, a

(i)
1 , o

(i)
1 , . . . , a

(i)
t−1, o

(i)
t) ∈ Hi.

In practice, computing the belief state bit is computationally intractable
due to the problem of nested beliefs [40]. It refers to the problem that, to
compute the belief states, each player must compute a probability distribution
over the state space and over the other players’ strategies, which depends on
their beliefs, which depend on the other player’s belief, and so on in an infinite
recursion.

To circumvent the nested beliefs problem, additional structure can be
imposed on the POSG. In particular, a POSG is called one-sided ifN = {1, 2}
and one player has perfect information. That is, only one player has partial
information [36, 40].

In one-sided POSGs, the player with perfect information observes both
the state of the game and the history of actions and observations of the other
player. Hence, it does not require a belief state. Therefore, the player with
partial information can compute the belief bit without having to consider the
belief of the opponent. Specifically, let π2 : S → ∆(A) denote the one-stage
strategy of the player with perfect information. Then, the belief state of the

Game Theoretical Framework | 19

player with partial information can be computed recursively as follows:

bt+1,π2(st+1) = C
∑
st∈S

∑
a
(2)
t ∈A2

(
Z(ot+1, st+1, (a

(1)
t , a

(2)
t))

T (st+1, st, (a
(1)
t , a

(2)
t))b(st)π2(a

(2)
t |st)

)
(3.2)

where C = 1/P[ot+1|a(1)1 , π2, bt] is a normalizing factor independent of st+1

to make bt+1 sum to 1 [28].

3.2.3 Solving for Best Response Strategies in POSGs
We now want a mathematical formulation of the POSG so that we can find
each players’ best response strategies, as defined in Section 3.1.2. Since a
partially observed stochastic game is an extension of a partially observed
Markov decision process, we can use Markov decision theory to formulate
this objective.

Let πi be the current strategy player by player i, π−i the fixed strategies
played by the other players, and E(πi,π−i) denotes the expectation under the
strategy profile (πi, π−i). Then the best response strategy would be the strategy
π∗
i which satisfy the following equation:

π∗
i ∈ BRi(π−i) = argmax

πi∈Πi

E(πi,π−i)

[
T∑
t=1

γt−1r
(i)
t

]
. (3.3)

Specifically, this is the strategy which maximizes the sum of discounted
rewards of player i. Now we can define the state-value of a certain strategy in
a POSG, i.e. the expected value of the strategy with current belief bt at time t,
as

Vπ(bt) = Eπ

[T∑
k=0

γkrt+k+1].

and furthermore the action-value of a strategy, meaning the value of action
a when in belief b in time t, as

Qπ(bt, at) = Eπ

[T∑
k=0

γkrt+k+1

]

20 | Game Theoretical Framework

In the case of a one-sided POSG, the equations for the player with full
observability contain st instead of bt.

A stationary strategy is a strategy which does not depend on time t, i.e.
π = π1 = π2 = Using Markov theory, we can derive the so called Bellman
equation [43] for the stationary strategy, stated as follows:

Vπ(bt) = E
[
rt+1 + γV (bt+1)|bt

]
.

This means that the state-value of a strategy in time t is the reward we can
obtain at that time plus the discounted state-value of the next state. This is
a fixed-point equation since both the left and right-hand side of the equation
depend on the state value Vπ.

Each players’ goal in an POSG is to maximize the expected discounted
return of rewards. Thus, the optimal state-value is V ∗(b) = supVπ(b). Using
similar derivations as for the Bellman equation, we can derive the Bellman
optimality equations for the POSG. To solve specifically for the best response
strategy, we take into consideration the opponents strategies π−i :

V ∗
i,π−i

(bt) = max
at∈Ai

Eπ−i,bt

[
rt+1 + γV ∗

π−i
(bt+1)|st, at

]
(3.4)

Q∗
i,π−i

(bt, at) = Eπ−i,bt

[
rt+1 + γV ∗

π−i
(bt+1)|st, at

]
(3.5)

BRi(π−i) = argmax
at∈Ai

Q∗(bt, at). (3.6)

Here, V ∗(st) and Q∗(st, at) denote the expected cumulative discounted
reward under π∗ for each state and state-action pair, respectively. Solving the
Bellman equations (Eqs. 3.4-3.5) means computing the value functions from
which an optimal strategy can be obtained (Eq. 3.6). Hence, BRi is obtained
from the Bellman equations given a fixed strategy from the opponents. Thus,
solving for the best response strategy is equivalent to solving a partially
observed Markov decision process. Going in the other direction, one can
model a POMDP as a one-sided partially observed game by adding a perfectly-
informed but completely ineffective player, i.e. by preventing this player from
affecting the transitions and rewards of the model [44].

Finally, if the POSG is zero-sum, it has a unique value function, V ∗(b) =

V ∗
1,π∗

2
(b) = V ∗

2,π∗
1
(b) [33, 34, 40]. Further, if the POSG is one-sided, V ∗ is

characterized by the following Bellman-style equation:

V ∗(b) = max
π1∈∆(A1)

min
π2∈∆(A2)

Eπ1,π2,b

[
rt+1 + γV ∗(bt+1)

]

Game Theoretical Framework | 21

where bt+1 is computed using Eq. 3.2.

3.2.4 Computing Nash Equilibria in POSGs
The methods to compute or approximate Nash equilibria in POSGs can be
divided in two categories: the finite horizon case and the infinite horizon
case. A finite-horizon POSG can be viewed as a type of extensive form game
with imperfect information [45]. In this case, it’s therefore possible to use
computational game theory methods to find Nash equilibrium, such as linear
or quadratic optimization [46, 47] or search algorithms [48, 49].

Computing equilibria in general infinite-horizon POSGs is computationally
intractable due to the problem of nested beliefs (see Section 3.2.2) [40, 42].
Therefore, the research has focused on sub-classes of infinite-horizon POSGs
that are tractable to solve. Two such sub-classes are one-sided POSGs
and POSGs with public observations, which can be solved using dynamic
programming and search-based algorithms [40, 40, 44, 50].

Lastly, approximate Nash equilibria in POSGs can be found by constructing
a dynamic process that converges to an equilibrium in the limit, such as
fictitious play processes [51, 46], regret minimization processes [52, 53],
evolutionary processes [54, 55], and self-play reinforcement learning processes
[37, 56, 57, 25, 21, 24]. In this project we focus on self-play reinforcement
learning to find approximate Nash equilibria in an infinite-horizon POSG. This
framework will be described further in the next chapter.

22 | Game Theoretical Framework

Modeling the Use Case with Game Theory | 23

Chapter 4

Modeling the Use Case with Game
Theory

In this section we address the first two research questions, i.e. we show how the
intrusion prevention use case can be modeled as a game and what theoretical
insights we can derived for this model. The game model is largely inspired
from the intrusion prevention use case set up in [2], [3] and [4].

4.1 Intrusion Prevention through Optimal Stopping
Our game model builds on optimal stopping theory. Optimal stopping is the
problem of choosing the time to take a specific action in order to maximize
the expected reward. For a more elaborate theoretical background, we refer to
[3]. In short, the game consists of two dependent stopping problems, one for
the attacker and one for the defender.

In an optimal stopping problem, at each time step t of the decision process,
two actions are available: “stop” (S) and “continue” (C). A stop action yields
a reward RS

st,st+1
and if it is a terminal stop action, the process terminates.

In the case of the continue action or a non-final stop action at, the decision
process transitions to the next state according to some transition probabilities
and yields a rewardRat

st,st+1
.

The defender has L stop actions. We associate each stop action of
the defender with a defensive action. For example, this could be resetting
user accounts, updating firewall configurations and ultimately blocking all
incoming traffic.

The attacker has two stop actions. The first stop action of the attacker starts
the intrusion and the second one ends it.

24 | Modeling the Use Case with Game Theory

4.2 Game Structure
We model the intrusion prevention use case with a zero-sum Partially Observed
Stochastic Game (POSG)

ΓP = ⟨N ,S, (Ai)i∈N , T , (Ri)i∈N , γ, ρ0, T, (Oi)i∈N ,Z⟩.

We assume a one-sided POSG where the attacker is fully informed whereas
the defender has partial observability. This assumption serves two purposes.
First, it makes solving the game tractable [40]. Second, it reflects our goal
of finding defender strategies that are robust against any attacker, including
attackers with perfect information.

The game has two players:

N = {1, 2}.

Player 1 is the defender and player 2 is the attacker.
The game state st ∈ {0, 1} is zero if no intrusion is occurring and st = 1

if an intrusion is ongoing. In the initial state, no intrusion is occurring and
s1 = 0. Hence, the initial state distribution is the degenerate distribution

ρ1(0) = 1.

Further, we introduce a terminal state ∅ ∈ S, which is reached when the game
ends. Thus, the set of states is

S = {0, 1, ∅}.

4.3 ActionsA and Reward FunctionR(st, (a(1)t , a
(2)
t))

The defender has two actions: “stop” (S) and “continue” (C), where each stop
action is associated with a defensive action. Hence,

A1 = {S,C}.

The defender has to perform L stop actions during an episode to prevent
an intrusion where L ≥ 1 is a public parameter of our use case that is known
to both the attacker and the defender.

Let A2(s) denote the set of actions of the attacker in state s. When st = 0

Modeling the Use Case with Game Theory | 25

the attacker has two options: “attack” (A) and “wait” (W). Hence,

A2(0) = {A,W}.

When s = 1, it can either choose to continue with the intrusion (C) or to stop
and abort the intrusion (S):

A2(1) = {S,C}.

The objective of the defender in the intrusion prevention use case is to
maintain service on the infrastructure while, at the same time, preventing a
possible intrusion at minimal cost. Therefore, we define the reward function
of the defender to give the maximal reward if the defender maintains service
until the intrusion starts and then prevents the intrusion by taking L stop
actions. Further, we assume that the attacker’s goal is the direct opposite of
the defender’s goal. That is, they play a zero-sum game where R2(st, at) =

−R1(st, at). Hence, it is sufficient to define the reward of the defender:
R(st, at) = R1(st, at).

The defender’s reward per time step R(st, at) is parameterized by the
reward that the defender receives for stopping an intrusion, Rst, the reward
that the defender receives for maintaining service Rsla, the cost of stopping
Rcost, and the loss of being intruded Rint:

R(∅, ·) = 0 (4.1)
R(0, (C,W)) = R(1, (C, S)) = Rsla (4.2)
R(0, (C,A)) = Rsla + pRst/L (4.3)
R(0, (S,W)) = R(1, (S, S)) = Rcost/L (4.4)
R(0, (S,A)) = R(1, (S,C)) = Rcost/L+Rst/L (4.5)
R(1, (C,C)) = Rsla +Rint. (4.6)

Eq. 4.1 states that the reward in the terminal state is zero (probability p is
defined in the next subsection). Eqs. 4.2-4.3 indicate that the defender receives
a positive reward for maintaining service. Eqs. 4.4-4.5 state that each stop
incurs a cost and possibly a reward if it affects an ongoing intrusion. Lastly,
Eq. 4.6 indicates that the defender receives a loss for each time step that it is
under intrusion.

26 | Modeling the Use Case with Game Theory

4.4 Transition Operator T and Time Horizon
T∅

The state transitions are stochastic and depend on the actions of both the
attacker and the defender. In any time step, there is a small probability that
the attacker is detected by the defender and the game ends, regardless of the
actions taken. Specifically, the probability that the attacker is detected and the
game ends is defined by a Bernoulli random variable Q ∼ Ber(p = 0.05).

We define the time-homogeneous transition operator Tlt(st+1, st, at) =

Plt [st+1|st, at] as follows:

Tlt>1(0, 0, (S,W)) = Tlt(0, 0, (C,W)) = 1− p (4.7)
Tlt>1(1, 1, (·, C)) = Tlt(1, 1, (C,C)) = 1− p (4.8)
Tlt>1(1, 0, (·, A)) = Tlt(1, 0, (C,A)) = 1− p (4.9)
Tlt>1(∅, 0, (·,W)) = Tlt>1(∅, 1, (·, C)) = p (4.10)
Tlt>1(∅, 0, (·, A)) = Tlt(∅, 0, (C,A)) = p (4.11)
Tlt(∅, 1, (C,C)) = p (4.12)
T1(∅, 0, (S,W)) = T1(∅, 0, (S,A)) = 1 (4.13)
Tlt(∅, 1, (·, S)) = T1(∅, 1, (S,C)) = Tlt>1(∅, ∅, ·) = 1. (4.14)

All other state transitions have probability 0.
Eqs. 4.7-4.8 define the probabilities of the recurrent state transitions: 0→

0 and 1 → 1. Specifically, the game stays in state 0 or with probability 1 − p

if the attacker selects the wait action W and lt − a1 > 0. Similarly, the game
stays state 1 with probability 1− p if the attacker chooses the continue action
C and lt − a1 > 0.

Eq. 4.9 captures the transition 0→ 1. Specifically, the game transitions to
the intrusion state with probability 1−p if the attacker chooses the attack action
A and lt−a1 > 0. Finally, Eqs. 4.10-4.14 define the transition probabilities to
the terminal state ∅. The terminal state is reached in three cases: when lt = 1

and the defender takes the final stop action S (i.e. lt − at = 0), when the
attacker takes the stop action S and aborts an ongoing intrusion, and when the
attacker is detected by the defender by chance with probability p.

With this definition of the transition probabilities, the evolution of the
system can be understood using the state transition diagram in Fig. 4.1.

The time horizon T∅ is a random variable that indicates the time t when the
terminal state ∅ is reached and the game ends. Since the probability that the

Modeling the Use Case with Game Theory | 27

Figure 4.1: State transition diagram of the POSG: each circle represents a state;
an arrow represents a state transition; a label indicates the event that triggers
the state transition; a game episode starts in state s1 = 0 with l1 = L. Image
courtesy of Kim Hammar.

game ends in any state except the initial state is non-zero (p > 0), it follows
that Eπ [T∅] < ∞ for any strategy profile π ∈ Π. (Remark: it is also possible
to define T =∞ and let ∅ be an infinitely absorbing state.)

4.5 ObservationsO and Observation Function
Z(ot+1, st+1, (a

(1)
t , a

(2)
t))

The defender has a partial view of the game and if st ̸= ∅ it observes
ot = (lt,∆xt). Here, lt ∈ {1, 2, . . . , L} is the number of stops remaining
and ∆xt denote the number of severe IDS alerts generated during time step t,
respectively. If the game is in the terminal state, the defender observes oT = ∅.

In this project, we consider two cases of the observation function. Firstly,
we limit the observation space, and base the observations and the observation
function on a simple intuitive heuristic, as described in Section 6.1.1. This is
to create a benchmark, and to test if the algorithm is working in this simple
case.

In the second part of the analysis, we use an observation function closer
to the real world application. Here, we assume that the number of IDS alerts
generated during one time step is a random variable X ∼ fX that depends
on the state. These observations are generated using a real emulation of the
IT infrastructure. Consequently, the probability that ∆x severe alerts occur
during time step t can be expressed as fX(∆x|st).

We define the time-homogeneous observation functionZ(ot+1, st+1, at) =

28 | Modeling the Use Case with Game Theory

P[ot+1|st+1, at] as follows:

Z
(
(lt,∆x), 0, ·

)
= fX(∆x|0) (4.15)

Z
(
(lt,∆x), 1, ·

)
= fX(∆x|1) (4.16)

Z
(
∅, ∅, ·

)
= 1 (4.17)

4.6 Strategy Space Π and Objective
Since the POSG is stationary and the time horizon T∅ is not pre-determined,
it is sufficient to consider stationary strategies. We consider the space of
stationary strategy profiles Π = Π1×Π2 where Π1 and Π2 denote the strategy
space of the defender and the attacker, respectively.

The goal of the defender and the attacker is to maximize, respectively
minimize, the expected discounted cumulative reward over the horizon T∅.
Hence, the best response functions BR1 and BR2 are defined as follows:

BR1(π2) = argmax
π1∈Π1

E(π1,π2)

[
T∅∑
t=1

γt−1R1(st, at)

]
(4.18)

BR2(π1) = argmin
π2∈Π2

E(π1,π2)

[
T∅∑
t=1

γt−1R1(st, at)

]
. (4.19)

We set the discount factor to be γ = 1. (Eqs. 4.18-4.19 are bounded when
γ = 1 since Eπθ

[T∅] is finite for any strategy profile π ∈ Π.)
The objective of our intrusion prevention use case is to find a robust defense

strategy which provides the optimal defense against the worst-case attacker
and to find the equilibrium outcome of the game. The problem of finding such
strategies corresponds to finding a strategy pair (π∗

1, π
∗
2) that satisfy:

π∗
1 ∈ BR1(π

∗
2) and π∗

2 ∈ BR2(π
∗
1) (4.20)

where π∗
1 is the optimal defender strategy against the worst-case attacker and

(π∗
1, π

∗
2) is a Nash equilibrium. Further, the value v of the game is:

v = E(π∗
1 ,π

∗
2)

[
T∅∑
t=1

γt−1R1(st, at)

]
. (4.21)

Eqs. 4.18-4.21 define an optimization problem which reflects the objective of
our use case. In the following sections, we analyze the structure of the solution

Modeling the Use Case with Game Theory | 29

to this problem using game theory and present our approach for computing the
solution using reinforcement learning.

4.7 Game-Theoretic Analysis of the Intrusion
Prevention Game Model

In this section we address the second research question. Thus, we derive
structural insights for the game model, which include showing that a Nash
equilibrium exists, and describe the properties of the pure Nash equilibrium
of the game. Furthermore, we show that there exists an optimal intrusion
prevention strategy of a thresh-holding structure.

Theorem 4.7.1 (Structural Insights for the Intrusion Prevention Game). Given
the partially observed stochastic game defined in Sections 4.2-4.6 and L stops
for the defender, the following holds:

A. A Nash equilibrium exists for the game.

Proof of theorem A. The proof that every one-sided partially observed
stochastic game with finite horizon or infinite horizon with γ ∈ (0, 1]

has a Nash equilibrium is available in [44]. The idea behind the proof
is that a POSG with finite horizon can be modeled as an extensive form
game. For an extensive form representation of the intrusion prevention
game, see Appendix A.

B. In any pure Nash equilibrium the attacker takes stopping action S in
both state st = 0 and st = 1 for any b ∈ B. Any equilibrium where the
attacker follows a different strategy is mixed.

Proof. See Appendix B.1. The idea behind the proof builds on the fact
that the defender recieverRsla, meaning that the attacker has an incentive
to attack faster, and that a pure strategy is simpler to defend against (from
the defender perspective).

C. For any attacker strategy π2, if fx is TP2, there exist L values of
α∗
1 . . . α

∗
L that are decreasing and a best response strategy π∗

1 for the
defender that satisfies:

π1,l(b) = S ⇐⇒ b ≥ α∗
l , l ∈ (1 . . . L).

30 | Modeling the Use Case with Game Theory

Proof. See Appendix B.2. The idea behind the proof is that the intrusion
prevention POSG builds on the POMDP model defined in [4], where a
similar structural property was proven for the POMDP model.

Theorem 4.7.1 A. states that there exists a Nash equilibrium, meaning that
there exist best response strategies for both the defender and the attacker in
the defined game model. This means that we can use methods to find Nash
equilibrium strategies to find automated defense strategies.

Theorem 4.7.1 B. states that the only pure Nash equilibrium that exists
is when the attacker starts and stops the game immediately. This means that
when learning equilibrium strategies through reinforcement learning, we can
expect most strategies to be mixed.

Theorem 4.7.1 C states that there exist best response strategies of the
defender with a specific structure. The interpretation is as follows. There
exists a defender best response stopping strategy that is a threshold strategy
where if there are l stops remaining, then the defender will stop for any belief
b ≥ α∗

l . Since these αl are decreasing it means that the expected stopping
threshold is lower the more stops the defender has left. As pointed out in [4],
knowing that there exists optimal strategies with a special structure has two
benefits. Firstly, this insight can lead to a more efficient implementation of
the strategies. Secondly, the complexity of learning an optimal strategy can
be reduced.

Modeling the Use Case with Game Theory | 31

32 | Finding Automated Strategies using Reinforcement Learning

Chapter 5

Finding Automated Strategies using
Reinforcement Learning

In this chapter, we describe our reinforcement learning approach. We address
the third research question and rationalize the choice of Neural Fictitious Self
Play as the reinforcement learning algorithm to compute automated intrusion
prevention strategies. We also describe the implementation of the algorithm
and our evaluation method.

5.1 Reinforcement Learning
Reinforcement learning is a branch of machine learning where agents learn
optimal behavior based on a trial-and-error procedure by interacting with
the environment. Within the environment, the agent receives a reward
(reinforcement) depending on which action is taken [58, 43]. The reinforcement
learning procedure can be summarized in the following steps:

• The agent observes the environment

• The agent decides what to do according to some strategy

• The agent receives some reward for this action

• The agent learns from this experience and improves their strategy

• The process is repeated until an optimal strategy is found

The process can be visualized as in Figure 5.1.

Finding Automated Strategies using Reinforcement Learning | 33

Figure 5.1: The reinforcement learning process visualized.

The reinforcement learning process can be modeled with a Markov Decision
Process (MDP) if the state space is observable, or with a Partially Observed
Markov Decision Process (POMDP) if the state space is not fully observable
[58, 43]. The objective of reinforcement learning is to find the optimal
strategy, or policy, in the Markov decision process.∗ In this project, the
intrusion prevention use case will be modeled as a stochastic game; however, as
described in Section 3.2.3, solving for the best response strategy is equivalent
to solving a POMDP. Therefore, reinforcement learning becomes a relevant
methodology even in the multi-agent case. Reinforcement learning algorithms
generally have no guarantees to converge to an optimal policy except for
special cases [59, 60].

We separate between some different classes of RL algorithms. Firstly, we
can separate between model-free versus model-based algorithms. In a model-
free algorithm, we are not trying to model the environment, while a model-
based algorithm tries to learn the transition or observation probabilities of
the model [43]. Among the model-free algorithms, we can separate between
value-based algorithms and policy-based algorithms. Value-based algorithms
tries to approximate solutions to the Bellman equations, while policy-based
algorithms tries to search through the policy space using gradient-based
methods. The algorithms can also be combined, e.g. through actor-critic
algorithms.

We also separate between tabular reinforcement learning and deep reinforcement
learning algorithms. Tabular reinforcement learning refer to methods in which
the approximate value functions can be stored in arrays and tables. Deep
reinforcement learning incorporates deep learning, which allows agents to
make decisions by approximating value functions using neural networks.
∗ By convention the term policies is used in Markov decision theory and strategies is used
in game theory. These two can be used interchangeably, although we try to use the game-
theoretical term as much as possible in this thesis.

34 | Finding Automated Strategies using Reinforcement Learning

5.1.1 Q-learning
Q-learning [61] is a form of tabular, model-free reinforcement learning
algorithm, presented first in 1989 in a PhD thesis by Christopher Watkins.
It was a major breakthrough in reinforcement learning as it was the first
algorithm with guaranteed convergence to the optimal policy [59]. By trying
all states repeatedly, and thereby training the algorithm, the agent can learn
which strategy yields the highest discounted reward. The Bellman optimality
equation assures there exists an optimal state-value V ∗(s) for the optimal
policy π∗.

For some policy π, we define the action values (Q-values), meaning the
value of action a when in belief b in time t, as

Qπ(st, at) =Eπ

[T∑
k=0

γkrt+k+1

]
= Eπ

[
rt+1 + γV (st+1)|st, at

]
In other words, the Q-value is the expected discounted reward for executing

action a at state s given that we follow policy π thereafter. By showing that
V ∗(st) = supat Q

∗(st, at) we have that the optimal policy can be found by
picking the action corresponding to the largest Q-value (that we call a∗), so
π∗(s) = a∗. For the Q-learning algorithm to find the optimal Q∗ values,
Watkins suggests the following learning rule:

Qt(s, a) = (1− αt)Qt−1(s, a) + αt[rt + γVt−1(st)]

where γVt−1(st) is the best action the agent think it can commit in the
next state st using the old q-table from Qt−1. By training the algorithm long
enough, the values ofQt(s, a) are guaranteed to converge toQ∗ [59]. However,
because this is a tabular algorithm, the required memory space is correlated to
the agent’s observation space and action space. Therefore Q-learning quickly
becomes intractable for larger problems.

In Q-learning, the agent always chooses the best action based on the highest
reward. However, the agent initially has zero knowledge of the environment.
Therefore there is a risk that the agent will quickly find and get stuck with a sub-
optimal policy if it just commits to the action choices based on exploitation of
what it already knows. This is a trade-off between exploitation and exploration
to find the globally optimal strategies of the game. A common exploration
strategy is the epsilon-greedy exploration strategy. With this strategy, the
agent will most of the time select the action with the highest estimated reward.

Finding Automated Strategies using Reinforcement Learning | 35

However, with some small probability p = ϵ, the agent will pick a random
action in the agent’s action space. The ϵ parameter is often decreased over
training episodes as exploration becomes less important.

5.1.2 Deep Q-networks
The Deep Q-network (DQN) combines the logic of basic tabular Q-learning
with function approximation using neural networks [62]. The goal for the
neural network, just like for Q-learning, is to find the optimal action-value
function Q∗(s, a) = supπ Eπ

[∑T
k=0 γ

krt+k+1

]
.

The authors proposed the use of a deep convolutional neural network,
in combination with several problem specific techniques described below, to
create the deep Q-network.

As the focus of this report is reinforcement learning, the basics of neural
networks and convolutional neural networks will only be described briefly. A
deep neural network is a sequential model structure in which mathematical
nodes are connected in several layers, which enables non-linear function
approximation, given that each node has a non-linear activation function. A
convolutional neural network is a neural network architecture which has been
particularly successful, especially for tasks such as image processing, object
classification and other two dimensional signal processing. A convolutional
neural network uses convolutional layers, which are layers based on convolution
and local receptive fields, which means that each node of the network takes
more data into consideration. Essentially, the task for the deep Q-network is to
use the information from the agent and the environment (a, r, s, s′) to improve
the agent’s strategy and maximize its rewards.

The agent is trying to find the optimal Q values

Q∗(st, at) = Eπ

[
rt+1 + γ sup

at+1

Q∗(st+1, at+1)|st, at
]
.

and we approximate this Q∗(s, a) ≈ Q(s, a; θ) with a convolutional neural
network where θ is the network weights.

At iteration i, if the optimal target values at last iteration is given by
r + γ supa Q

∗(s, a; θ−i) using parameters θ−i from the last iteration, then the
squared loss function can be calculated as

Li = (Q∗(s, a)i −Q(s, a)i)
2 = (r + γ sup

a
Q∗(s, a; θ−i)−Q(s, a; θi))

2.

36 | Finding Automated Strategies using Reinforcement Learning

This means that the target function depends on the network weights, in contrast
to supervised learning where the targets are fixed.

Because of the online updating of the target function used in the loss, the
DQN also uses a target network to improve the stability of the training. The
target network is a clone of the training network Q, and it is used to generate
the Q∗ values used in the loss function. Every fixed amount of iterations, the
target network is updated with the newest weights θ from Q. Generating the
loss target values using an older set of parameters creates a delay between the
update of the Q network and the update of the target values, meaning that the
loss function becomes less likely to diverge.

Another method to improve the effectiveness of the DQN is a tecnique
called experience replay. What it means is that the agent’s experience at each
time step (the state, action, reward and next state) i.e. et = (st, at, rt, st+1) is
stored in a dataset D. Training in the DQN is then done by drawing a sample
uniformly from the data set D, instead of using the newest experience. This
breaks the correlation of the data points used for training and also improves
data efficiency, as the same data point can be used several times to train the
network.

5.1.3 Single-agent versus Multi-agent Reinforcement
Learning Algorithms

A Multi-Agent Reinforcement Learning (MARL) scenario is a context where
several agents have to improve their strategies at the same time, such as in
the intrusion prevention use case in this report. Researchers have attempted
to simply extend the existing reinforcement learning methods (such as the
DQN) with limited success. The main reason for this is that the environment,
from each agent’s perspective, is no longer stationary [26]. For example,
in a stationary environment, an agent making a certain action in a certain
state will learn the probabilities of the different possible outcomes and reward
when trained over many episodes. But in a multi-agent environment, these
probabilities will change, as the other agents adapts their strategy in relation
to the first agent.

For this reason, we explored different multi-agent reinforcement learning
algorithms, as a simple single-agent reinforcement learning algorithm would
not effectively be able to handle the multi-agent case. One state of the art multi-
agent reinforcement learning algorithm, that builds on a game theoretical
approach, is the Neural Fictitious Self Play (NFSP) algorithm. Neural
fictitious self play is based on fictitious play and fictitious self play, so we

Finding Automated Strategies using Reinforcement Learning | 37

will first introduce these algorithms.

5.2 Fictitious Play, Fictitious Self Play and
Neural Fictitious Self Play

Fictitious play [51] is an iterative method for learning Nash equilibria in
normal form games. In fictitious play, the agents choose the best response
to the opponents’ average behavior. After updating their strategy, the players
play each other another time, until the average strategy converges. It has
been shown that in for example two-player zeros-sum games, the average
strategy profile of the fictitious players converges to a Nash equilibrium. In
[63], a general version of the fictitious play is defined, called the Generalized
Weakened Fictitious Play. It shares convergence guarantees with normal self
play, but allows for approximate best responses and average strategy updates.

Fictitious Self Play (FSP) [22] is a machine learning framework for
fictitious play, to make it possible for use in extensive form games. Because
it builds on Generalized Weakened Self Play, it is possible to use approximate
best response and average response calculations.

There are two machine learning components of the fictitious self play.
For the approximate best responses, the authors let each agent learn the
best response through reinforcement learning. The average strategy can be
approximated using some supervised learning model. Each episode of the
general machine learning framework and algorithm can be summarized in
three steps.

• In the first step, we simulate episodes by playing the agents’ strategies
against each other. The resulting experience or data is stored in two
types of agent memory:MRL andMSL. MRL stores experience of the
opponents’ action. MSL stores the agents’ own behavior.

• In the second step, each agent uses some reinforcement learning method
to approximate a best response by using the experiences stored inMRL

• In the last step of each iteration, the agent uses supervised learning to
update its own average strategy, using experience stored inMSL.

Neural Fictitious Self Play (NFSP) is a deep reinforcement learning
algorithm introduced by Heinrich et al. in 2017 [21]. NFSP uses the logic
of the Fictitious Self Play framework in combination with neural networks
to learn approximate Nash Equilibrium strategies. Each agent in NFSP

38 | Finding Automated Strategies using Reinforcement Learning

uses two separate deep learning neural networks; one deep Q-network using
reinforcement learning to learn the approximate best responses, and one
network using supervised learning to learn the average strategy. As in the
FSP, the agent will behave according to a mixture of the average strategy
and the best response strategy, and the average strategy will approximate the
Nash Equilibrium strategy. In this subsection some components of the NFSP
algorithm will be described. The complete pseudocode and implementation
of NFSP adapted to our use case is described in Section 5.3.

NFSP uses Deep Q-learning as reinforcement learning algorithm. Deep Q-
learning is a relatively simple reinforcement learning algorithm, and is deemed
suitable in the NFSP framework. This means that the NFSP automatically
incorporates several of the components described in Section 5.1.2, as one
of the networks trained in the NFSP will be the deep Q-network. This
includes components such as the use of a target network, the experience
replay methodology, the ϵ-greedy exploration strategy as well as the same loss
function used by the DQN.

Two other components used in NFSP are reservoir sampling and average
network dynamics. Reservoir sampling [64] is an algorithm to choose a
random sample, without replacement, from a population of unknown size.
The supervised learning in the NFSP uses reservoir sampling to store the
experience (at, st) when following the approximate best response strategy. At
each iteration, the average network is fed a data sample from the reservoir to
train the average response. This is done by optimizing the log-probability of
past actions taken.

Furthermore, the authors suggest a discrete-time approximation of a
method called anticipatory dynamics, to properly sample best response strategies
and the average strategies. In theory, the agents could only play the average
strategies against each other to learn an approximate equilibrium. However,
the agents need to play the approximate best response strategy to fill the
reservoir memoryMSL, which is needed to train the average network. Thus,
the authors suggest the use of an anticipatory parameter. The anticipatory
parameter is the probability that the best response strategy is played. This
means that with some strategy η the agent chooses the best response strategy
and samples from the DQN, and with some probability 1−η the agent samples
from the average network.

Finding Automated Strategies using Reinforcement Learning | 39

5.3 Choice and Implementation of Main Algorithm
In this project, we choose to implement the NFSP algorithm to learn approximate
Nash Equilibrium strategies in the Intrusion Prevention Game. There are
four main reasons for this. Firstly, the NFSP algorithm shows state-of-the
art results in the original paper, when evaluated on imperfection-information
games such as Leduc Poker and Limit Texas Hold’em poker. NFSP vastly
outperformed standard reinforcement learning algorithms such as the simple
DQN [21]. Secondly, NFSP is designed for games with imperfect information,
which is a requirement for the intrusion prevention game [21]. Thirdly,
because the NFSP algorithm builds on deep reinforcement learning and
neural network approximation, it can more effectively handle large state and
observation spaces compared to for example certain computational game
theoretic approaches, such as counterfactual regret minimization [65] which
does not scale to our use case. Fourthly, because of the game-theoretical
foundation of the Fictitious Self Play and Neural Fictitious Self Play algorithms,
the results can still be discussed and interpreted from a game-theoretic
perspective, although we are using reinforcement learning instead of computational
game theory.

The general algorithm of FSP and NFSP is described in Section 5.2.
Below we describe certain adjustments to the algorithm, to take the partial
observability of the intrusion game into account. Furthermore, we present the
pseudocode for the implementation of the main algorithm.

To generate the defender observation, we have to implement the observation
functionZ(ot+1, st+1, at) = P[ot+1|st+1, at]. For the first benchmark evaluations,
we use a simple discrete probability distribution to describe this stochastic
correlation. Thereafter, we implement an observation function using traces
from real hacking attacks to generate a continuous observation value. In both
cases, the value from the observation function is used to calculate the belief
of the defender player.

As described in the mathematical background, the belief of the defending
player can be calculated recursively [28]:

bt+1,π2(st+1) = C
∑
st∈S

∑
a
(2)
t ∈A2

(
Z(ot+1, st+1, (a

(1)
t , a

(2)
t))

T (st+1, st, (a
(1)
t , a

(2)
t))b(st)π2(a

(2)
t |st)

)

40 | Finding Automated Strategies using Reinforcement Learning

where C = 1/P[ot+1|a(1)1 , π2, bt] is a normalizing factor independent of st+1

to make bt+1 sum to 1.
This recursive equation can be implemented in Python, by taking the

specified elements defined in the equation multiplied with each other, an
operation we can call a Bayesian filter. The belief must be updated every
timestep, as it is dependent on the current observation and state as well as
the most recent actions.

Furthermore, the belief update is dependent on the attacker stage strategy
π2(a

(2)
t |st). The stage strategy is the probabilities of actions of the attacker

at a given time step. The attacker stage strategy will be a 2x2-matrix with
the current action probabilities for action (Continue, Stop) for the 2 states
(No Intrusion, Intrusion). However, while the observation function Z and
transition tensor T will be fixed over time, the stage strategy will be dependent
both on which strategy the attacker is using (average or best response), the
current state and also the current belief. The worst-case attacker will in
practice know exactly what the current belief of the defender is and adapt their
stage strategy depending on this. The stage strategy given a certain belief and
state will also change with the training of the agent. Thus, to update the belief
and the stage strategy, we do the following:

• Start with initial belief of intrusion 0 for the defender, b0,π2(0) =

1, b0,π2(1) = 0

• Evaluate the agents’ actions a(1)t , a
(2)
t

• After each timestep, update the current attacker stage strategyπ2(a
(2)
t |st, bt)

by evaluating the current attacker strategy network σ2 (i.e., the strategy
network used in this specific episode) for states st and belief bt

• Apply a Bayesian filter to calculate bt+1,π2(st+1|ot+1, st+1, st, a
(1)
t , a

(2)
t , b(st), π2(a

(2)
t |st))

using equation 3.2

The complete pseudocode for our NFSP implementation, along with the
belief update and stage strategy calculation, follows in algorithm 1.

Finding Automated Strategies using Reinforcement Learning | 41

Algorithm 1 Neural Fictitious Self Play implemented for the Intrusion Prevention use case
Initialize security game Γ and execute the agents through RunSecurityGame
procedure RunSecurityGame(Γ)

for each agent i = 1 (defender), 2 (attacker) do
Initialize replay memoriesMRL andMSL

Initialize average-strategy network Π(s, a|θΠ) with random weights θΠ
Initialize action-value network Q(s, a|θQ) with random weights θQ
Initialize DQN target network parameters θQ′ ← θQ

Initialize anticipatory parameter η
end for
while within computational budget, for many episodes do

Set agent strategies σ(i) ←

{
ϵ-greedy(DQN) with probability η

Π with probability 1− η

Initialize state s0 = 0, belief b0 = 0 and reward r0 = 0
for timestep t = 1...T do

Sample actions a(i)t from strategy σ(i)

Execute actions at = (a(1), a(2))t in game at the same time
Observe rewards rt+1, next information state st+1

Sample observation ot+1 from observation function Z(ot+1, st+1, at)
for each agent do

Store transition (st, at, rt+1, st+1) in reinforcement learning memoryMRL

if agent follows best response strategy σ = ϵ-greedy (Q) then
Store behaviour tuple (st, at) in supervised learning memoryMSL

end if
Update weights θΠ with stochastic gradient descent on loss:
L(θΠ) = E(s,a)∼MSL

[− log Π(s, a|θΠ)]
Update weights θQ with stochastic gradient descent on loss:
L(θQ) = E(s,a,r,s′)∼MRL

[(r + γ supa′ Q(s′, a′|θQ′
)−Q(s, a|θQ))2]

Periodically update DQN target network weights θQ′
= θQ

end for
When both agents played:
Update stage strategy π2(a

(2)
t+1|st+1) by evaluating episode strategy σ2

Recursively update belief bt+1,π2(st+1|ot+1, st+1, st, a
(1)
t , a

(2)
t , b(st), π2(a

(2)
t |st))

Evaluate stochastic game transition T
if terminal state reached then

break current episode
end if

end for

end while
end procedure

42 | Finding Automated Strategies using Reinforcement Learning

5.4 Evaluation of Multi-Agent RL Algorithms

5.4.1 Exploitability
One way to measure the closeness of a learned strategy to a Nash Equilibrium
is to measure the Nash Convergence of the strategy [66]. If the game value for
player i is gvi, we define the worst case value for player i playing strategy πi as
δi = gvi−vi(πi, BR(πi)). Intuitively, this is the difference of reward for player
i when playing current strategy πi, while opponent is playing the best response
to that strategy, BR(πi). If player i is playing the Nash Equilbrium strategy,
then this is δi = 0. We can thus define the Nash convergence (NashConv) of a
stategy profile as

NashConv(π) =
∑
i

δi(πi).

We can also define a ϵ-Nash Equilibrium as one where maxiδi(π) ≤ ϵ. In
a two player zero-sum game, we have that gv1 = −gv2. Thus we can define
the exploitability of a player profile π = (π1, π2) of a zero-sum game as

Exploitability(π) =
∑

i δi(πi)

2
=

v1(BR(π2), π2) + v2(π1, BR(π1))

2
.

In other words, the exploitability of a strategy profile (π1, π2) can be
calculated by fixing one of the strategies, calculating the average reward of
a best response strategy to the fixed strategy, and thereafter following the
same procedure for the other agent’s strategy. A small exploitability or an
exploitability close to 0 will indicate closeness to the Nash Equilibrium. A
simple algorithm to calculate exploitability in algorithm 2.

Algorithm 2 Exploitabilty calculation in a two-player zero-sum game
input Strategy profile to π = (π1, π2) to evaluate
output The exploitability value

procedure Exploitability(π)
for player i = 1, 2 do

Calculate best response strategy BR(πi)
Calculate vi = vi(πi, BR(π−i))

end for
return (v1 + v2)/2

Finding Automated Strategies using Reinforcement Learning | 43

Evidently, the algorithm is dependent on two subroutines; one to calculate
the best response of a strategy, and one to calculate the average reward when
two agents with fixed strategies play against each other. In the next two
subsections we will discuss these two subroutines briefly.

5.4.2 Approximate Best Response and Approximate
Exploitability

The problem with the exploitability calculation is that it requires a calculation
of the exact best response of a strategy. The calculation of the exact best
response, in turn, requires a full tree traversal of the game tree. This is an
intractable calculation for a game with large state space or action space, as the
tree increases exponentially in size. Furthermore, in the context of this thesis,
finding the best response for the defender is equivalent to solving a POMDP,
which is PSPACE-complete [67].

To circumvent this problem, one can use standard reinforcement learning
methods for learning the approximate best response. By fixing the strategy
of one of the agents, the environment becomes a single-agent environment,
since one of the players will not change their strategy in response to the other.
The best response is the same as the optimal strategy in that single-player
environment [66]. Thus, we can implement the following subroutine to find
the (approximate) best response strategy:

Algorithm 3 Approximate Best Response calculation to strategy πi

input Strategy profile πi to exploit
output The approximate best response strategy ABR(πi)

procedure Approximate Best Response calculation(π)
Initialize ABR(πi) uniformely
while within computational budget, for many episodes do

initialize state s
for each step of the episode, state s is not terminal do

a← action given by BR(πi) for s
take action a, observe r, s′ given by fixed strategy πi

Use RL algorithm to improve BR(πi) given a, r, s, s′

s← s′

end for
end while
return ABR(πi)

We can run algorithm 2 to find the approximate exploitability using

44 | Finding Automated Strategies using Reinforcement Learning

the approximate best response, found by using algorithm 3. There are
two problems with this approach. The first one is that the calculation
of the approximate best response carries a high computational cost, as it
requires training a reinforcement learning algorithm from scratch. The better
approximation of the exploitability we want to find, the more episodes we need
to run the learning algorithm. Thus, if we want to evaluate the convergence
of an MARL algorithm as we are training it, it will increase the total training
time of the MARL algorithm.

The second problem is that the approximate best response only will count
as a lower bound of the exact exploitability. The exact exploitability is the
exploitability calculated by a worst-case player. It is possible to reach this
exact exploitability by training a reinforcement learning algorithm, depending
on how long we train the approximate best responses, but in practice the
exploitability will always be a approximation. Another way to phrase this is
that the exact best response is going to be at least as good as the approximate
best response learned in algorithm 3. Thus, if the approximate best response
value is high, then it is an indication that the agent is weak, but if the
approximate best response value is low, then we cannot draw any definitive
conclusions. To evaluate the approximate best response, one can look at the
average reward of the agent at each episode to see if that value converges within
the computational budget.

5.4.3 Approximation of Average Episode Reward and
Value of the Game

The second subroutine needed for the exploitability calculation is the calculation
of the average reward a player receives when playing a certain strategy against
its best response strategy, vi(πi, BR(πi)). A simple way to implement a
general evaluation of the average episode reward is by using a Monte Carlo-
simulation, and then taking the average of the episode reward for many
episodes. To evaluate some strategy profile π = (π1, π2), do the following:

• Let attacker and defender play against each other using strategies π =

(π1, π2) (without training the networks), and register the total reward
each episode

• After some amount of Monte Carlo episodes, stop the evaluation,
and take the average reward to get the Monte Carlo approximation of
expected reward per episode

Finding Automated Strategies using Reinforcement Learning | 45

This general algorithm can be used to calculate vi(πi, BR(πi)), that is, the
expected episode reward of the best response strategy to πi. But it can also be
used for other types of evaluation. For example, in the case that both players
play their Nash Equilibrium strategies, the expected cumulative reward will
be the value of the game. To approximate the value of the game we can use
the Monte Carlo procedure with the average strategies from NFSP as input, as
the average NFSP strategies are expected to converge to the Nash strategies.
Furthermore, the Monte-Carlo approximation can also be used to evaluate
a strategy against a fixed agent, for example an agent playing a completely
random strategy or heuristic strategy.

46 | Finding Automated Strategies using Reinforcement Learning

Experiment Setup and Results | 47

Chapter 6

Experiment Setup and Results

The intrusion game follows the setup presented in Chapter 4. All the necessary
transition, reward and observation tensors are implemented in Python, as they
are defined in Chapter 4. In each time step, the input to each agent’s neural
network is either (l, b, s) or (l, b, b), depending on if the attacker or defender
agent was playing. Here l is the number of stops remaining of the defender, b
is the defender’s belief state, and s is the true state of the game. The reason for
the extra input to the defender is because we want identical networks training
the defender and the attacker.

The implementation of the Neural Fictitious Self Play is based on the
implementation in OpenSpiel [68], which is a public repository of state-of-
the-art algorithms for multi-agent reinforcement learning. We have extended
the implementation of NFSP in OpenSpiel to fit our game. The main
difference between the original OpenSpiel implementation and ours is the
belief calculation.

Moreover, the intrusion prevention game environment is implemented in
Python following the OpenSpiel conventions, to make the game compatible
with the OpenSpiel implementation of NFSP. Furthermore, the algorithms
to compute exploitability as well as the subroutines to compute approximate
best response and average episode reward, as described in Section 5.4, are
implemented.

NFSP was manually calibrated using the parameters in table 6.1. Many
of the parameters were based on the original NFSP paper [21]. Although
some variations were tested in an attempt to find optimal hyperparameters, no
extensive parameter search was conducted, due to the high computational cost
of training and evaluating the networks. After tuning the hyperparameters,
training was repeated several times with different random seeds. The results

48 | Experiment Setup and Results

presented in the next section are the averages and standard deviations from the
three best random seeds.

Hyperparameter Value
MSL 30 000 000
MRL 600 000
LRSL 0.1
LRRL 0.01

Total training time 1 000 000 episodes
Anticipatory parameter η 0.1
Layer sizes [128, 128, 128]
Optimizer Stochastic Gradient Descent
Batch size 256

Target network refit of DQN Every 1000 episodes
ϵ of DQN 0.08

Table 6.1: Hyperparameters used in the base case for the limited game

The game parameters specified in table 6.2 are used.

Game parameter Value
Rsla 1
Rst 2
Rcost -3
Rint -3

Table 6.2: Game parameters used in the intrusion prevention game

6.1 Analysis of the Intrusion Game with Limited
Observation Space

In the first part of the analysis, the game is limited in observation space. Due
to the limitation of game size, we lose some of the comparative advantages of
the NFSP in comparison to other algorithms. However, we can use the limited
game to evaluate benchmark strategies.

Experiment Setup and Results | 49

6.1.1 Observation Function
In the first part of the experiment, the observation space for the defender was
defined as a discrete grid of 10 observations from 0-9, with each observation
having a probabilistic correlation with the state 0 and 1. In the base case,
the distributions of the correlations were defined in a way so that lower
observations were more probable when there was no intrusion (state 0) and in
the same way higher observations were more probable during intrusion (state
1). This small observation space was inspired from domain knowledge, where
a small observation could be interpreted as for example a low amount of IDS
signals and therefore low, but not 0, probability of intrusion.

Figure 6.1: The probability distribution of the discrete observation space for
states 0 and 1

6.1.2 Learning Nash Equilibria in the Intrusion Prevention
Game

In this subsection we show that the NFSP algorithm learns an approximate
Nash Equilibrium, by looking at evaluation metrics such as the approximate
exploitability and the average game value.

Exploitability Analysis

The approximate exploitability, as defined in Section 5.4, was calculated
every 20,000 time steps. For the approximate best response calculation,
a reinforcement learning algorithm had to be used. For this single-agent
reinforcement learning task (holding one of the agent’s strategies fixed) we

50 | Experiment Setup and Results

chose to evaluate using the Proximal Policy Optimization [69] as implemented
in the standard reinforcement learning library Stable Baselines [70]. PPO has
been shown to have good results on a collection of benchmark RL tasks and
is relatively simple to implement. The PPO was trained for 50000 episodes,
with a learning rate of 3 ∗ 10−4, a network architecture of [128, 128, 128], and
a batch size of 2048. The result of this approximate exploitability calculation
over time can be found in Figure 6.2.

When experimenting, it was found that the exploitability often reached a
global minimum after a certain number of episodes. After this, continuing
training the agents resulted in diverging (increasing) exploitability. This
behavior could happen in deep reinforcement learning for reasons such as
overfitting. Therefore, using empirical evaluation, we find a cutoff episode,
after which we stop training the agents. We found that a cutoff after 1,000,000
episodes gives the best results.

Figure 6.2: Approximate exploitability

We observe that the approximate exploitability decreases in both value
and variance over time. Starting from a value of around 2.5, the approximate
exploitability converges to a value of around 0.3 in the last 100,000 episodes,
with some fluctuations. As noted in Section 5.4, this approximate exploitability
should only be considered a lower bound for the true exploitability. The fact
that the approximate exploitability converges is an indication that the game
reaches an equilibrium state. Further analysis of the game value and average
episode reward can help to analyze if this is truly a Nash Equilibrium.

Experiment Setup and Results | 51

Game Value and Average Episode Reward Analysis

As described in Section 5.4, the approximate exploitability was calculated by
calculating the approximate best response for the attacker and the defender
against the NFSP strategy. The average best response episode rewards gives
an approximate bound for the game value, that we can calculate by letting the
average NFSP attacker and average NFSP defender play against each other.
The results of these evaluations can be seen in Figure 6.3 and 6.4.

Figure 6.3: Graph of the approximate game value as well as the defender best
response average episode rewards when playing against the NFSP attacker
agent

The approximate game value converges to roughly 0.4. The best response
average episode rewards take longer to converge. For the best response
defender, the average reward decreases from 4 to roughly 0.4, as we can see
in Figure 6.3. The orange exploitability bound between the best response
defender and the average NFSP defender corresponds to how much a BR
defender could improve their value by exploiting the NFSP attacker agent. In
the last 350,000 episodes, the trained PPO best response defender receives
even less reward than the NFSP defender. Theoretically this should not be
possible (as described in 5.4) but could happen if the best-response is not
trained long enough, and if the NFSP agent closely approximate the best
response strategy. Thus this is an indication that there is Nash convergence.

52 | Experiment Setup and Results

Figure 6.4: Graph of the approximate game value from the attacker
perspective, as well as the attacker best response average episode rewards when
playing against the NFSP defender agent

In Figure 6.4, we observe a similar visualization for the attacker. The
attacker receives the negative approximate game value, -0.4, in the calculated
Nash Equilibrium. The best response attacker can improve this to roughly
0.5 average reward. The blue exploitability bound between the best response
attacker and the average NFSP attacker corresponds how much a BR attacker
could improve their value by exploiting the NFSP defender agent.

In the analysis of the game value as well as the average episode reward,
two evaluation attacker agents are implemented; one random agent, and one
heuristic agent. The trained NFSP defender agent can be tested against these
evaluation agents over time, to see how the average reward develops.

The random attacker simply chooses a completely random action, independent
of state and defender belief. This means that the random attacker agent will
play strategy

π2(0) = π2(1) = (0.5, 0.5).

For the heuristic attacker the strategy is manually chosen to

π2(0) = (0.8, 0.2), b ≤ 0.5, (0.2, 0.8), b > 0.5

π2(1) = (0.2, 0.8), b ≤ 0.5, (0.8, 0.2), b > 0.5.

Experiment Setup and Results | 53

The intuition for the heuristic agent strategy is that attacker is more likely
to begin the attack (stop) if the belief of the defender is low and there currently
is no intrusion. On the other hand, the attacker is more likely to stop the current
attack if the belief of the defender is high. The strategy profiles for these agents
are depicted in Figure 6.5.

Figure 6.5: The strategy profiles of the evaluation agents

When evaluating the NFSP defender against the evaluation attackers as
well as the best response agent, we observe the results in Figure 6.6.

54 | Experiment Setup and Results

Figure 6.6: The average episode reward when playing against different
attackers

All values in Figure 6.6 correspond to the average episode reward for
the defender agent. As already visualized in Figure 6.4, the best response
attacker outperforms the other attackers and acts as a lower bound for the
average episode reward for the NFSP defender. The heuristic attacker receives
roughly the same average episode reward as the NFSP attacker against the
NFSP defender. The NFSP attacker does better on average than the random
attacker.

6.1.3 Characterization of the Learned Nash Equilibrium
When evaluating the optimal strategy as calculated by the NFSP, we have to
take into account that the worst-case attacker considers three factors: number
of defender stops left l, the current state s, as well as the current belief of the
defender b. The defender only takes into consideration their own belief as well
as the number of stopping actions it can still perform. We can visualize these
strategies in 6 graphs, three for each agent and one for each l = 1, 2, 3.

Experiment Setup and Results | 55

Figure 6.7: The average strategies from the NFSP algorithm

For each agent, we evaluate the average strategies for 100 belief steps
between 0 and 1. We can observe the results of this evaluation in Figure 6.7.
The top row of figures demonstrates the attacker strategies while the second
row demonstrates the defender strategies.

The blue line, which represents the attacker stopping probability in state
0, starts at a value close to 1 for b = 0 and decreases slightly as belief goes up
for l= 3 and 2. For l=1, the attacker seems to be more careful when choosing
to start its attacks.

In state 1 (intrusion), the attacker stopping probability increases as b

increases. However, for l = 3, the attacker has a high stopping probability
even for lower belief values. This could perhaps correspond to a wary attacker,
that performs a short intrusion and thereafter quickly tries to escape before the
defender notices the intrusion.

For the defender strategies, the NFSP strategy converges to a high stopping
probability for b > 0.5, and a lower stopping probability for smaller beliefs.
The fewer stops the defender agent has remaining, the more likely the agent
becomes to stop even for low beliefs.

Furthermore, we also analyze the Nash Equilibrium stopping strategies in
the case a game parameter is changed. This is to demonstrate how much the
learned strategies depend on how the subjective defender value for example
server uptime, or how costly they consider a stopping action or an intrusion.

We consider the case when Rint = −5 instead of Rint = −3. This means

56 | Experiment Setup and Results

that the cost of intrusion increases for the defender, and the reward for intrusion
increases for the attacker. All other parameters are held constant in comparison
with the base case. The result of this experiment can be seen in Figure 6.8.

Figure 6.8: The average strategies from the NFSP algorithm in the basecase
and when Rint = −5

In this case, for the defender, we can observe that the converged strategies
in the increased intrusion cost case have a higher stopping probability for
all l = 1, 2, 3. This corresponds to the intrusion cost being relatively more
expensive than the stopping cost compared to the base case. For the attacker,
we see that the defender’s increased probability of stopping is reflected in that
the probability of starting the attack is decreased. Furthermore, the attacker is
more likely to stop in state 1, maybe due to the defender being more probable
to stop.

6.2 Analysis of Game with Data Observations
from Emulation

In the second part of the experiment, the observation space for the defender is
defined using real data traces from simulations of hacking attacks on the KTH
testbed.

Experiment Setup and Results | 57

6.2.1 Observation Function
The number of severe IDS alerts during the states of no intrusion and intrusion
is measured on an emulated IT infrastructure as specified in Section 5. A of
[4]. The emulation evolves in time-steps, where the attacking agent takes a
specific sequence of actions. In this project, we use the data traces generated
by the expert attacker profile described in [4]. This means that the attacker
uses sophisticated exploits such as remote execution vulnerabilities rather than
brute-force methods, meaning that the agent is harder to discover.

In total, there were 271 possible observations of severe IDS alerts, labeled
from 0-270. The probability distribution of the observations in state 0 and
1 is seen in Figure 6.9. In state 0, the probability of all observations are
fairly evenly distributed, with the lower observation 0-50 being slightly more
probable. In state 1, we observe probability spikes for some higher number of
IDS signals; for example for the highest observation (270) the probability of
observation is roughly 28% in state 1.

Figure 6.9: The probability distribution of severe IDS signals for state 0 and
state 1 generated by the expert attacker agent

6.2.2 Learning Nash Equilibria
As in Section 6.1, we evaluate the NFSP algorithm using approximate exploitability.
The exploitability is calculated in the same manner as in the first part of
the analysis, i.e. by using a PPO algorithm to find the approximate best
response every 20,000 time steps. We use the same hyperparameters and game
parameters for this part of the analysis. The approximate exploitability results
are found in Figure 6.10.

58 | Experiment Setup and Results

Figure 6.10: Approximate exploitability

We see that like for the game with small observation space, the exploitability
converges, although to a slightly higher value (0.5) and with slightly higher
variance than for the benchmark game. This is an indication that the game
reaches an equilibrium state. When looking at the game value plots in this
case, we see similar results as in Figures 6.3, 6.4, and 6.6; therefore, these
plots are omitted in this section. In the next section, we compare the learned
strategies with the base case case.

6.2.3 Comparison of Learned Strategies with Base
Case

In Figure 6.11 we compare the average strategies learned in the game with
observations from real data compared to the one from a small observation
space. We observe that the learned strategies are similar both for the defender
and the attacker. The defender in the second case has slightly higher stopping
probabilities for higher beliefs, and similarly on the other hand the attacker has
slightly lower attacking probabilities for higher beliefs.

Experiment Setup and Results | 59

Figure 6.11: Comparing the average strategies from the NFSP algorithm in
the base case and learning using data traces

60 | Experiment Setup and Results

Discussion and Conclusion | 61

Chapter 7

Discussion and Conclusion

In this chapter, we discuss and analyze the obtained results. Furthermore, we
present some suggestions for further research as well as the conclusion of the
thesis.

7.1 Discussion of Results
The main research questions this thesis aims to answer is 1) how can the
intrusion prevention use case be modeled as a game 2) what structural insights
can be derived for the model and 3) which reinforcement learning algorithms
and/or game-theoretic methods are suitable for computing automated intrusion
prevention strategies for the given model.

By extending previous models of the intrusion prevention use case, we
present a possible answer to question 1), by modeling the game as a POSG.
For question 2), we refer to the structural and theoretical results in Section
4.7. Here, we find that a Nash equilibrium exists for the game. Furthermore,
we find that the pure Nash equilibrium will be uncommon and of a specific
structure. This is confirmed in the results we see in Chapter 6, where all the
equilibria found are mixed. Lastly, we derive that a best response strategy
for the defender will be of a thresh-holding structure, with lower thresh-holds
for stopping the more stops the defender has left. This theoretical result is
in contrast to what was actually found in Figure 6.7. Here, there seems to
be an indication of a thresh-holding strategy, where there is some constant
belief αl for which the defender uses the stopping action with high probability.
However, in the strategies found empirically, we have α1 < α2 < α3, which
could indicate that there are some instability in the experimental results, as
will be discussed further.

62 | Discussion and Conclusion

For question 3), we choose to implement an adapted NFSP algorithm to
try to find an approximate Nash equilibrium in the defined game. The initial
results presented in Chapter 6 indicate that a Nash equilibrium is possible
to find using this methodology. The approximate exploitability converges to
a value of around 0.3 in the case of small observation space and 0.5 using
data from emulations, compared to a benchmark exploitability of roughly 0.1
achieved in the original NFSP paper [21]. Thus the adapted NFSP algorithm
achieves state-of-the art results for the POSG-model in terms of exploitability.

When inspecting the converged strategies, we find that they imitate human
strategies and intuitive behavior. For example, in Figure 6.7, we observe that
the the defender is more likely to perform a defensive stopping action when it
has a higher belief, and in the same manner the attacker is more likely to stop
the intrusion when the belief of the defender is high. However, we also see a
high dependency on hyperparameters and game parameters. When changing
one of the game parameters, for example the cost of intrusion, the learned
Nash strategies change substantially, as can be seen in Figure 6.8. Hence, to
be able to use the game model and the NFSP algorithm practically in finding
automated security strategies, one would have to think carefully about how to
define the rewards in a way so that they most closely reflect the goals of the
organization owning the IT infrastructure.

The results of Section 6.2 indicate that the same NFSP setup applied for an
intrusion game with a small observation space also could be used for a game
where the observations are from data traces generated using simulations. In
Figure 6.11 we observe that the learned strategies in both cases are similar,
except that the defender has slightly higher stopping probabilities when using
data traces. One interpretation of this is as follows. The better data signal
we have from the IDS, the higher belief should be required for the defender
to perform a stopping action. If we have a noisy signal, the defender would
require lower belief to perform a stop since there would be more uncertainty
associated with the signal. Since we have quite similar stopping probabilities
in both the case when a synthetic probability distribution of observations is
used, as described in Figure 6.1, as we have when using the severe IDS signals
(Figure 6.9) then it would mean these two distributions work almost equally
well for the defender to form beliefs.

We can further discuss the instability of the solutions. As already noted,
the solutions are highly dependent on the reward function. One other instability
we found when running experiments is the dependency on the random seed.
When running the experiments, oftentimes up to 10-15 different random
seeds had to be tested to find 3-4 converging results. In the other cases,

Discussion and Conclusion | 63

the reinforcement learning algorithm got stuck in a local optimum, and the
exploitability could be stuck on a value such as 3.5 indefinitely. This instability
could cast doubt on the efficiency of using NFSP for finding automated
security strategies, and should be researched further.

Although we show that the NFSP algorithm could be used to learn
automated defense strategies in the intrusion prevention use case, there still
remains the question of relevancy of the learned strategies in practical applications.
When finding the Nash equilibrium defense strategy, we find a strategy which
guarantees some minimum reward. In real life applications when defending
against automated hacking attacks, we could perhaps do better than just the
"minimum reward" by using a specific defense heuristic.

7.2 Future Work
There are many different aspects that could be considered in the future when
extending this line of work.

Firstly, a natural extension of this master thesis is to further research how
different IDS signals could be used to form the beliefs of the defender. In
this research only a 1-D data signal is used, and one could explore how for
example a 3-D IDS signal would affect the learned strategies. In for example
[4] a 3-dimensional observation space is used. One problem with this is
that an increase of dimension in observation space would increase the size
of the observation space exponentially. For example, if three different IDS
signals were used to form an observation, where each signal could take a
value between 0-199, then the size of total observation space would be 2003 =
8, 000, 000 observations. A tensor of this size would require roughly 32 GB of
memory, meaning that the belief calculation would be extremely slow, and
would require some clever feature engineering to handle. Furthermore, it
would be interesting to research how well the automated intrusion strategies
could be learned depending on the noisiness of the signal. As described in the
previous section, a more noisy signal, where it is harder for the defender to
differentiate between intrusion and no intrusion, should intuitively mean that
the defender is more likely to perform a stopping action.

Secondly, one line of research could try implementing other types of multi-
agent reinforcement learning algorithms than NFSP to see if they converge
better. This could be for example the Policy-Space Response Oracle algorithm
[24] or Alpha-Zero [25]. Furthermore, the fictitious play framework should
be possible to implement with other reinforcement learning algorithms than
the DQN when finding the best response. One possible candidate could be

64 | Discussion and Conclusion

the PPO algorithm, which in this thesis is used to find the approximate best
response when finding the approximate exploitability.

Thirdly, one could further develop the POSG model to make it more
complex, and explore whether multi-agent reinforcement learning still is a
viable option for the more complex model. This includes for example adding
a component which not only decides when to take a stopping action, but also
decides what action to take. Another example would be to use different types
of attackers or increase the complexity of attack. In future research we want
to find a game model which more closely reflect how an actual IT system
operates, and these sorts of adjustment could make the game model more
precise.

Fourthly, in this thesis, we had to adapt the NFSP algorithm by adding the
calculation of the defender belief, which is central in the theoretical framework
of partially observed games. To the best of our knowledge, this is the first time
player beliefs have been used in a model-free reinforcement learning or multi-
agent reinforcement learning algorithm. This novel implementation, described
in 5.3, should be possible to extend for other multi-agent reinforcement
learning algorithms as well.

7.3 Conclusion
In this thesis, our main research goals were to model the intrusion prevention
use case as a game and to find a suitable reinforcement learning algorithm
for computing automated intrusion prevention strategies for the given model.
We have shown that the use case can be modeled with a zero-sum onesided
partially observed stochastic game and we have explored the theoretical
properties of this game. We have shown that a Nash equilibrium exists
for the game and that the equilibrium strategies have specific properties.
Furthermore, we have demonstrated that the Neural Fictitious Self Play
algorithm is an effective way to find automated strategies in the intrusion
prevention game that we have defined. By adapting the NFSP specifically to
the game, we narrow the gap between the theoretical framework of partially
observed stochastic games and model-free reinforcement learning. Although
the converged strategies imitate human behavior, they are heavily dependent
on the hyperparameter setup and the reward function. Thus there remains more
research to be done before NFSP or some other multi-agent algorithm could
be used practically to prevent hacking attacks.

REFERENCES | 65

References

[1] W. E. Forum, “Global cybersecurity outlook,” 2022. [Online]. Available:
https://www.weforum.org/reports/global-cybersecurity-outlook-2022

[2] K. Hammar and R. Stadler, “Finding effective security strategies through
reinforcement learning and Self-Play,” in International Conference on
Network and Service Management (CNSM 2020), Izmir, Turkey, 2020.

[3] ——, “Learning intrusion prevention policies through optimal stopping,”
in International Conference on Network and Service Management
(CNSM 2021), Izmir, Turkey, 2021, https://arxiv.org/pdf/2106.07160.
pdf.

[4] ——, “Intrusion prevention through optimal stopping,” IEEE
Transactions on Network and Service Management, 2022. doi:
10.1109/TNSM.2022.3176781

[5] ——, “A system for interactive examination of learned security policies,”
2022. [Online]. Available: https://arxiv.org/abs/2204.01126

[6] K. Malialis and D. Kudenko, “Multiagent router throttling:
Decentralized coordinated response against ddos attacks,” in IAAI,
2013.

[7] B. Ning and L. Xiao, “Defense against advanced persistent
threats in smart grids: A reinforcement learning approach,”
in 2021 40th Chinese Control Conference (CCC), 2021. doi:
10.23919/CCC52363.2021.9549271 pp. 8598–8603.

[8] M. Alauthman, N. Aslam, M. Alkasassbeh, S. Khan, A. al Qerem, and
K. Choo, “An efficient reinforcement learning-based botnet detection
approach,” J. Netw. Comput. Appl., vol. 150, 2020.

https://www.weforum.org/reports/global-cybersecurity-outlook-2022
https://arxiv.org/pdf/2106.07160.pdf
https://arxiv.org/pdf/2106.07160.pdf
https://arxiv.org/abs/2204.01126

66 | REFERENCES

[9] T. Alpcan and T. Basar, Network Security: A Decision and Game-
Theoretic Approach, 1st ed. USA: Cambridge University Press, 2010.
ISBN 0521119324

[10] M. Tambe, Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned, 1st ed. USA: Cambridge University Press, 2011.
ISBN 1107096421

[11] C. Kamhoua, C. Kiekintveld, F. Fang, and Q. Zhu, Game Theory
and Machine Learning for Cyber Security. Wiley, 2021. ISBN
9781119723929. [Online]. Available: https://books.google.se/books?
id=EBxszQEACAAJ

[12] M. H. Manshaei, Q. Zhu, T. Alpcan, T. Basar, and J.-P. Hubaux, “Game
theory meets network security and privacy,” ACM Comput. Surv., vol. 45,
no. 3, pp. 25:1–25:39, Jul. 2013. doi: 10.1145/2480741.2480742.
[Online]. Available: http://doi.acm.org/10.1145/2480741.2480742

[13] A. Aydeger, M. H. Manshaei, M. A. Rahman, and K. Akkaya, “Strategic
defense against stealthy link flooding attacks: A signaling game
approach,” IEEE Transactions on Network Science and Engineering,
vol. 8, no. 1, pp. 751–764, 2021. doi: 10.1109/TNSE.2021.3052090

[14] O. Tsemogne, Y. Hayel, C. Kamhoua, and G. Deugoue, Partially
Observable Stochastic Games for Cyber Deception Against Network
Epidemic, 12 2020, pp. 312–325. ISBN 978-3-030-64792-6

[15] O. Vaněk, Z. Yin, M. Jain, B. Bošanský, M. Tambe, and M. Pěchouček,
“Game-theoretic resource allocation for malicious packet detection
in computer networks,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems - Volume
2, ser. AAMAS ’12. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2012. ISBN 0981738125
p. 905–912.

[16] K. C. Nguyen, T. Alpcan, and T. Basar, “Stochastic games
for security in networks with interdependent nodes,” in 2009
International Conference on Game Theory for Networks, 2009.
doi: 10.1109/GAMENETS.2009.5137463 pp. 697–703.

[17] J. Gabirondo-López, J. Egaña, J. Miguel-Alonso, and R. Orduna Urrutia,
“Towards autonomous defense of sdn networks using muzero based

https://books.google.se/books?id=EBxszQEACAAJ
https://books.google.se/books?id=EBxszQEACAAJ
http://doi.acm.org/10.1145/2480741.2480742

REFERENCES | 67

intelligent agents,” IEEE Access, vol. 9, pp. 107 184–107 199, 2021. doi:
10.1109/ACCESS.2021.3100706

[18] A. Laszka, W. Abbas, S. S. Sastry, Y. Vorobeychik, and X. Koutsoukos,
“Optimal thresholds for intrusion detection systems,” in Proceedings of
the Symposium and Bootcamp on the Science of Security, ser. HotSos
’16. New York, NY, USA: Association for Computing Machinery,
2016. doi: 10.1145/2898375.2898399. ISBN 9781450342773 p. 72–81.
[Online]. Available: https://doi.org/10.1145/2898375.2898399

[19] T. Alpcan and T. Basar, “A game theoretic analysis of intrusion detection
in access control systems,” in 2004 43rd IEEE Conference on Decision
and Control (CDC) (IEEE Cat. No.04CH37601), vol. 2, 2004. doi:
10.1109/CDC.2004.1430267 pp. 1568–1573 Vol.2.

[20] Q. Zhu and T. Başar, “Dynamic policy-based ids configuration,” in
Proceedings of the 48h IEEE Conference on Decision and Control
(CDC) held jointly with 2009 28th Chinese Control Conference, 2009.
doi: 10.1109/CDC.2009.5399894 pp. 8600–8605.

[21] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play
in imperfect-information games,” CoRR, vol. abs/1603.01121, 2016.
[Online]. Available: http://arxiv.org/abs/1603.01121

[22] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious self-play in
extensive-form games,” in Proceedings of the 32nd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, F. Bach and D. Blei, Eds., vol. 37. Lille,
France: PMLR, 07–09 Jul 2015, pp. 805–813. [Online]. Available:
http://proceedings.mlr.press/v37/heinrich15.html

[23] G. W. Brown, “Iterative solution of games by fictitious play,” 1951,
activity analysis of production and allocation.

[24] M. Lanctot, V. F. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls,
J. Pérolat, D. Silver, and T. Graepel, “A unified game-theoretic approach
to multiagent reinforcement learning,” CoRR, vol. abs/1711.00832,
2017. [Online]. Available: http://arxiv.org/abs/1711.00832

[25] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go

https://doi.org/10.1145/2898375.2898399
http://arxiv.org/abs/1603.01121
http://proceedings.mlr.press/v37/heinrich15.html
http://arxiv.org/abs/1711.00832

68 | REFERENCES

through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.
[Online]. Available: http://science.sciencemag.org/content/362/6419/
1140/tab-pdf

[26] L. Canese, G. C. Cardarilli, L. Di Nunzio, R. Fazzolari, D. Giardino,
M. Re, and S. Spanò, “Multi-agent reinforcement learning: A
review of challenges and applications,” Applied Sciences, vol. 11,
no. 11, 2021. doi: 10.3390/app11114948. [Online]. Available: https:
//www.mdpi.com/2076-3417/11/11/4948

[27] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning:
A selective overview of theories and algorithms,” 2019. [Online].
Available: https://arxiv.org/abs/1911.10635

[28] K. Horák, B. Bošanský, and M. Pěchouček, “Heuristic search
value iteration for one-sided partially observable stochastic games,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31,
no. 1, Feb. 2017. [Online]. Available: https://ojs.aaai.org/index.php/
AAAI/article/view/10597

[29] W. Stallings and L. Brown, Computer Security: Principles and Practice,
3rd ed. USA: Prentice Hall Press, 2014. ISBN 0133773922

[30] E. Zouave, M. Bruce, K. Colde, M. Jaitner, I. Rodhe, and T. Gustafsson,
“Artificially intelligent cyberattacks,” 2020, ,Swedish Defence Research
Agency.

[31] H. W. Kuhn, Extensive games and the problem of information, H. W.
Kuhn and A. W. Tucker, Eds. Princeton, NJ: Princeton University Press,
1953.

[32] J. F. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
pp. 286–295, 1951.

[33] J. von Neumann, “Zur Theorie der Gesellschaftsspiele. (German) [On
the theory of games of strategy],” vol. 100, pp. 295–320, 1928.

[34] L. S. Shapley, “Stochastic games,” Proceedings of the National
Academy of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953. doi:
10.1073/pnas.39.10.1095. [Online]. Available: https://www.pnas.org/
content/39/10/1095

http://science.sciencemag.org/content/362/6419/1140/tab-pdf
http://science.sciencemag.org/content/362/6419/1140/tab-pdf
https://www.mdpi.com/2076-3417/11/11/4948
https://www.mdpi.com/2076-3417/11/11/4948
https://arxiv.org/abs/1911.10635
https://ojs.aaai.org/index.php/AAAI/article/view/10597
https://ojs.aaai.org/index.php/AAAI/article/view/10597
https://www.pnas.org/content/39/10/1095
https://www.pnas.org/content/39/10/1095

REFERENCES | 69

[35] J. Filar and K. Vrieze, Competitive Markov Decision Processes.
Springer, 1997.

[36] A. Neyman and S. Sorin, Stochastic Games and Applications, ser.
Classics in Applied Mathematics. Springer, 2003. [Online]. Available:
https://link.springer.com/book/10.1007/978-94-010-0189-2

[37] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Proceedings of the Eleventh International
Conference on International Conference on Machine Learning, ser.
ICML’94. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1994. ISBN 1558603352 p. 157–163.

[38] J. F. Nash, “Equilibrium points in n-person games,” Proc. of the National
Academy of Sciences, vol. 36, pp. 48–49, 1950.

[39] J. Hespanha and M. Prandini, “Nash equilibria in partial-information
games on markov chains,” in Proceedings of the 40th IEEE Conference
on Decision and Control, vol. 3, 2001. doi: 10.1109/CDC.2001.980562
pp. 2102–2107 vol.3.

[40] K. Horak, B. Bosanský, V. Kovarík, and C. Kiekintveld, “Solving
zero-sum one-sided partially observable stochastic games,” CoRR, vol.
abs/2010.11243, 2020. [Online]. Available: https://arxiv.org/abs/2010.
11243

[41] K. Åström, “Optimal control of markov processes with incomplete
state information,” Journal of Mathematical Analysis and Applications,
vol. 10, no. 1, pp. 174–205, 1965. doi: https://doi.org/10.1016/0022-
247X(65)90154-X. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/0022247X6590154X

[42] E. A. Hansen, D. S. Bernstein, and S. Zilberstein, “Dynamic
programming for partially observable stochastic games,” in Proceedings
of the Nineteenth National Conference on Artificial Intelligence, San
Jose, California, 2004, pp. 709–715. [Online]. Available: http:
//rbr.cs.umass.edu/shlomo/papers/HBZaaai04.html

[43] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998. ISBN 0262193981

[44] K. Horák, “Scalable algorithms for solving stochastic games with limited
partial observability,” Ph.D. dissertation, 2019.

https://link.springer.com/book/10.1007/978-94-010-0189-2
https://arxiv.org/abs/2010.11243
https://arxiv.org/abs/2010.11243
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
https://www.sciencedirect.com/science/article/pii/0022247X6590154X
http://rbr.cs.umass.edu/shlomo/papers/HBZaaai04.html
http://rbr.cs.umass.edu/shlomo/papers/HBZaaai04.html

70 | REFERENCES

[45] H. W. Kuhn, 11. Extensive Games and the Problem of Information.
Princeton University Press, 2016, pp. 193–216. [Online]. Available:
https://doi.org/10.1515/9781400881970-012

[46] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations. Cambridge, UK:
Cambridge University Press, 2009. ISBN 978-0-521-89943-7

[47] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. USA: Cambridge University Press, 2007. ISBN
0521872820

[48] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, pp. 293–326, 1975.

[49] R. Coulom, “Efficient selectivity and backup operators in monte-carlo
tree search,” vol. 4630, 05 2006. doi: 10.1007/978-3-540-75538-87

[50] K. Horák and B. Bošanský, “Solving partially observable stochastic
games with public observations,” Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, pp. 2029–2036, Jul. 2019.
doi: 10.1609/aaai.v33i01.33012029. [Online]. Available: https://ojs.aaai.org/
index.php/AAAI/article/view/4032

[51] G. W. Brown, “Iterative solution of games by fictitious play,” Activity analysis
of production and allocation, vol. 13, no. 1, pp. 374–376, 1951.

[52] D. Blackwell, “An analog of the minimax theorem for vector payoffs.” Pacific
Journal of Mathematics, vol. 6, pp. 1–8, 1956.

[53] H. Young, Strategic Learning and its Limits. Oxford University Press,
2004. [Online]. Available: https://EconPapers.repec.org/RePEc:oxp:obooks:
9780199269181

[54] L. Samuelson, Evolutionary Games and Equilibrium Selection, ser. MIT
Press Books. The MIT Press, September 1998, vol. 1, no. 0262692198.
ISBN ARRAY(0x484e5310). [Online]. Available: https://ideas.repec.org/b/
mtp/titles/0262692198.html

[55] D. Fudenberg and D. Levine, The Theory of Learning in Games,
1st ed. The MIT Press, 1998, vol. 1. [Online]. Available: https:
//EconPapers.repec.org/RePEc:mtp:titles:0262061945

https://doi.org/10.1515/9781400881970-012
https://ojs.aaai.org/index.php/AAAI/article/view/4032
https://ojs.aaai.org/index.php/AAAI/article/view/4032
https://EconPapers.repec.org/RePEc:oxp:obooks:9780199269181
https://EconPapers.repec.org/RePEc:oxp:obooks:9780199269181
https://ideas.repec.org/b/mtp/titles/0262692198.html
https://ideas.repec.org/b/mtp/titles/0262692198.html
https://EconPapers.repec.org/RePEc:mtp:titles:0262061945
https://EconPapers.repec.org/RePEc:mtp:titles:0262061945

REFERENCES | 71

[56] J. Hu and M. P. Wellman, “Nash q-learning for general-sum stochastic games,”
J. Mach. Learn. Res., vol. 4, no. null, p. 1039–1069, Dec. 2003.

[57] M. Bowling, “Multiagent learning in the presence of agents with limitations,”
Ph.D. dissertation, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, May 2003, available as technical report CMU-CS-
03-118.

[58] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Belmont,
MA: Athena Scientific, 1996.

[59] T. Jaakkola, M. Jordan, and S. Singh, “Convergence of stochastic iterative
dynamic programming algorithms,” in Advances in Neural Information
Processing Systems, vol. 6, 1994. [Online]. Available: https://proceedings.
neurips.cc/paper/1993/file/5807a685d1a9ab3b599035bc566ce2b9-Paper.pdf

[60] H. Robbins and S. Monro, “A Stochastic Approximation Method,” The
Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400 – 407, 1951.
doi: 10.1214/aoms/1177729586. [Online]. Available: https://doi.org/10.
1214/aoms/1177729586

[61] C. Watkins and P. Dayan, “Technical note: Q-learning,” Machine Learning,
vol. 8, pp. 279–292, 05 1992. doi: 10.1007/BF00992698

[62] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14236

[63] D. Leslie and E. Collins, “Generalised weakened fictitious play,”
Games and Economic Behavior, vol. 56, pp. 285–298, 08 2006. doi:
10.1016/j.geb.2005.08.005

[64] J. S. Vitter, “Random sampling with a reservoir,” ACM Trans. Math. Softw.,
vol. 11, no. 1, p. 37–57, mar 1985. doi: 10.1145/3147.3165. [Online].
Available: https://doi.org/10.1145/3147.3165

[65] M. Zinkevich, M. Johanson, M. Bowling, and C. Piccione, “Regret
minimization in games with incomplete information,” in Advances
in Neural Information Processing Systems, J. Platt, D. Koller,

https://proceedings.neurips.cc/paper/1993/file/5807a685d1a9ab3b599035bc566ce2b9-Paper.pdf
https://proceedings.neurips.cc/paper/1993/file/5807a685d1a9ab3b599035bc566ce2b9-Paper.pdf
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
http://dx.doi.org/10.1038/nature14236
https://doi.org/10.1145/3147.3165

72 | REFERENCES

Y. Singer, and S. Roweis, Eds., vol. 20. Curran Associates, Inc.,
2008. [Online]. Available: https://proceedings.neurips.cc/paper/2007/file/
08d98638c6fcd194a4b1e6992063e944-Paper.pdf

[66] F. Timbers, E. Lockhart, M. Schmid, M. Lanctot, and M. Bowling,
“Approximate exploitability: Learning a best response in large games,”
CoRR, vol. abs/2004.09677, 2020. [Online]. Available: https://arxiv.org/abs/
2004.09677

[67] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of markov decision
processes,” Math. Oper. Res., vol. 12, p. 441–450, Aug. 1987.

[68] M. Lanctot, E. Lockhart, J.-B. Lespiau, V. Zambaldi, S. Upadhyay, J. Pérolat,
S. Srinivasan, F. Timbers, K. Tuyls, S. Omidshafiei, D. Hennes, D. Morrill,
P. Muller, T. Ewalds, R. Faulkner, J. Kramár, B. D. Vylder, B. Saeta,
J. Bradbury, D. Ding, S. Borgeaud, M. Lai, J. Schrittwieser, T. Anthony,
E. Hughes, I. Danihelka, and J. Ryan-Davis, “OpenSpiel: A framework
for reinforcement learning in games,” CoRR, vol. abs/1908.09453, 2019.
[Online]. Available: http://arxiv.org/abs/1908.09453

[69] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, 2017, http://arxiv.org/abs/1707.
06347. [Online]. Available: http://arxiv.org/abs/1707.06347

[70] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore,
P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, and Y. Wu, “Stable baselines,” https://github.com/
hill-a/stable-baselines, 2018.

[71] V. Krishnamurthy, Partially Observed Markov Decision Processes: From
Filtering to Controlled Sensing. Cambridge University Press, 2016.

https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://proceedings.neurips.cc/paper/2007/file/08d98638c6fcd194a4b1e6992063e944-Paper.pdf
https://arxiv.org/abs/2004.09677
https://arxiv.org/abs/2004.09677
http://arxiv.org/abs/1908.09453
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

Appendix A: Extensive Form Representation of the Game Model | 73

Appendix A

Extensive Form Representation
of the Game Model

Using a fictitious player “nature” (N) with a fixed strategy that represents
the stochastic transitions and observations in the game, the partially observed
stochastic game model can be visualized in extensive form as shown in Fig.
A.1. First, playerN decides the public parameterL. Then, the defender (player
1) stops (action S) or continues (action C). If L = 1 and the defender chose S,
the game ends. Otherwise, the attacker starts the intrusion (action A) or waits
(action W). Next, the attacker is detected with probability p. If the attacker
was not detected, player N generates an observation o ∈ O sampled from the
observation function Z . Then, if the intrusion has started (s = 1), the attacker
either continues the intrusion (action C), or aborts (action S), in which case
the game ends. This procedure continues until either the attacker aborts the
intrusion, the attacker is detected, or the defender performs the final stop, after
which the episode ends.

74 | Appendix A: Extensive Form Representation of the Game Model

∅
p p p p p

∅ ∅ ∅ ∅

N.0

L = 1

L = 2

L = 3

1.0
Γs=0
L=1 Γs=0

L=3Γs=0
L=2

S C S C S C

∅ 2.0 2.0 2.0

A W A W A W A W A W
N.1N.1 N.0 N.1 N.0 N.1 N.0 N.1 N.0 N.1 N.0

1.1

o ∈ O

S C

∅ 2.1

∅
S C

1.1 ...

...
... Γs=0

L=1Γs=1
L=1 Γs=1

L=2 Γs=0
L=2 Γs=1

L=2 Γs=0
L=2 Γs=1

L=3 Γs=0
L=3Γs=0

L=1

Γs=1
L=1

Figure A.1: A partial view of the POSG in extensive form; a filled circle denote
a decision node; a unfilled circle denote a terminal node; the first label next
to each node indicate the player who makes the decision; the second label
next to each node and the dashed lines indicate the states and the information
sets; a zig-zag branch is a short-hand for many branches; a triangle indicates
a subgame; Γs

L denotes a subgame that starts in state s with L stops remaining
of the defender. Image courtesy of Kim Hammar.

Appendix B: Proof of Properties of the Intrusion Prevention Game | 75

Appendix B

Proof of Properties of the Intrusion
Prevention Game

In this appendix we present the proofs of Theorem 4.7.1 presented in Section
4.7.

B.1 Proof of Theorem 4.7.1 B.
The proof regarding the properties of the pure Nash equilibrium strategies for
the attacker builds on two lemmas. In the first lemma, we show the attacker
will attack in state st = 0 at some point. In the second lemma, we show that
there exists a pure Nash equilibrium strategy where the attacker stops in both
states intrusion and no intrusion. Then, we combine the lemmas and show that
this is the only pure Nash equilibrium that exists.

Lemma B.1.1. In any Nash equilibrium (π∗
1,l, π

∗
2,l) there exists a combination

of l ∈ {1 . . . L} and b ∈ B such that π∗
2,l(S|b, 0) > 0, i.e. the probability of

attacker to start the attack is non-zero.

Proof of Lemma 1. Assume by contradiction that there exists a best response
strategy

π∗
2,l(S|b, 0) = 0, ∀l ∈ {1 . . . L},

i.e. the attacker never starts the attack. It then follows from the definition of the
reward function (Eqs. 4.1-4.6) that the best response strategy for the defender
is to never stop, π∗

1(b) = C, ∀b ∈ B. But then π∗
2 is not a best response to

π∗
1 . This follows because Rsla > 0, and waiting forever would yield an infinite

reward for the defender. Since π∗
2 is not a best response, this strategy profile is

not a Nash equilibrium.

76 | Appendix B: Proof of Properties of the Intrusion Prevention Game

Lemma B.1.2. If fx(.|0) and fx(.|1) are disjoint, there exists a pure Nash
equilibrium where the attacker takes the first stop action at t=1 to start the
intrusion and takes the second stop action at t=2 to stop the intrusion.

Proof of Lemma 2. If fx(.|0) and fx(.|1) are disjoint, it follows from Equation
3.2 that the defender knows the state at any time-step i.e. bt(st) = 1. Then
it follows that the best response strategy of the defender against any attacker
strategy is a pure strategy that takes the continue action in state st = 0 and stop
action in state st = 1. Since Rsla > 0 it then follows that the best response
strategy of the attacker is a pure strategy that stops in both st = 0 and st = 1.
Thus the strategies (π∗

1,l, π
∗
2,l) form a pure Nash equilibrium.

Now we combine the two Lemmas to prove Theorem 4.7.1 B.

Proof of Theorem 4.7.1 B. It follows from Lemma 2 that if fx(.|0) and fx(.|1)
are disjoint, a pure Nash equilbrium where the attacker takes action S in both
st = 0 and st = 1 for any b ∈ B exists. From Lemma 1 we know that in any
pure Nash equilibrium, the attacker strategy takes action S in state st for some
b̄ ∈ B. Assume by contradiction that there exists a pure Nash equilibrium
(π∗

1,l, π
∗
2,l) where there exists a b̄ ∈ B where π∗

2,l(b̄, 0) = S and π∗
2,l(b̄, 1) = C

where b̄ is any belief obtained from Eq. 3.2 after taking the first stop action.
Since π∗

2,l is pure and ρ1(0) = 1, the defender can infer the state st at any
timestep using Eq. 3.2, i.e. bt(st) = 1. It follows from the definition of the
reward function that π∗

1,l(b̄) = S. If π∗
1,l(b̄) = S then it follows from the reward

function that π∗
2,l(b̄, 1) = C is not a best response and thus (π∗

1,l, π
∗
2,l) is not a

Nash equilibrium.

B.2 Proof of Theorem 4.7.1 C.
The last theorem relates to the structural properties of the optimal stopping
strategy. This theorem states that there exists an optimal strategy with thresh-
holding properties. The theorem build on the fact that the partially observed
stochastic game is an extension of the partially observed Markov decision
process defined in the previous work [4].

IfL ≥ 1, an additional condition applies: the probability matrix of fx must
be TP2 (all second order minors must be non negative), as of definition 10.2.1
of [71]. This is true for the probabilities generated by the probability function
Z since fx is stochastically montone in s.

Appendix B: Proof of Properties of the Intrusion Prevention Game | 77

Proof of Theorem 4.7.1 C. Given any attacker strategy π2,l the best response
strategy π∗

1,l of the defender is an optimal policy in the POMDP that results
from keeping π2,l fixed in the POSG, and vice versa. Thus, it is sufficient to
show that there exists L decreasing values α∗

1 . . . αL and an optimal policy π∗
1,b

in the POMDP that satisfies:

π∗
1,b(b) = s ⇐⇒ b ≥ α∗

l , l ∈ {1 . . . L}.

Since fx is TP2 by assumption and the POMDP satisfies the conditions of
Theorem 1 in [4], the result follows.

	Introduction
	Related Work
	Problem and Research Questions
	Methodology for Analysis
	Scope and Limitations
	Contributions
	Report Outline

	The Intrusion Prevention Use Case
	Basic Concepts of Computer Security
	Description of the Use Case

	Game Theoretical Framework
	Introduction to Noncooperative Game Theory
	Game Representations: Normal Form and Extensive Form
	Solution Concepts: Strategies, Best Response and Nash Equilibrium
	Maxmin, Minmax, and Value of a Zero-sum Game

	Stochastic games and Partial Observability
	Partially Observed Stochastic Games (POSGs)
	Belief States and One-sided POSGs
	Solving for Best Response Strategies in POSGs
	Computing Nash Equilibria in POSGs

	Modeling the Use Case with Game Theory
	Intrusion Prevention through Optimal Stopping
	Game Structure
	Actions A and Reward Function R(st,(a(1)t, a(2)t))
	Transition Operator T and Time Horizon T
	Observations O and Observation Function Z(ot+1,st+1,(a(1)t,a(2)t))
	Strategy Space and Objective
	Game-Theoretic Analysis of the Intrusion Prevention Game Model

	Finding Automated Strategies using Reinforcement Learning
	Reinforcement Learning
	Q-learning
	Deep Q-networks
	Single-agent versus Multi-agent Reinforcement Learning Algorithms

	Fictitious Play, Fictitious Self Play and Neural Fictitious Self Play
	Choice and Implementation of Main Algorithm
	Evaluation of Multi-Agent RL Algorithms
	Exploitability
	Approximate Best Response and Approximate Exploitability
	Approximation of Average Episode Reward and Value of the Game

	Experiment Setup and Results
	Analysis of the Intrusion Game with Limited Observation Space
	Observation Function
	Learning Nash Equilibria in the Intrusion Prevention Game
	Characterization of the Learned Nash Equilibrium

	Analysis of Game with Data Observations from Emulation
	Observation Function
	Learning Nash Equilibria
	Comparison of Learned Strategies with Base Case

	Discussion and Conclusion
	Discussion of Results
	Future Work
	Conclusion

	References
	Extensive Form Representation of the Game Model
	Proof of Properties of the Intrusion Prevention Game
	Proof of Theorem 4.7.1 B.
	Proof of Theorem 4.7.1 C.

