

Intrusion Prevention through Optimal Stopping

Digital Futures Machine Learning Day, 17 January 2022 Kim Hammar (kimham@kth.se) Rolf Stadler (stadler@kth.se) KTH Royal Institute of Technology, EECS, Division of Network and Systems Engineering

Motivation

Problem: Cyber attacks evolve quickly. As a consequence, a defender must constantly adapt and improve the target system to remain effective.

Approach

We formulate intrusion prevention as a multiple stopping problem and use reinforcement learning to automatically find optimal policies.

Contributions

- 1. A novel formulation of the use case as a multiple stopping problem.
- 2. A reinforcement learning approach to obtain policies in an emulated infrastructure.

Our Approach

- **The emulation system** replicates key components of the target infrastructure and is used for data collection and policy evaluation.
- **The simulation system** is used to execute POMDP episodes and learn policies through reinforcement learning.

Use Case: Intrusion Prevention

A defender takes measures to protect an IT infrastructure against an attacker while, at the same time, providing a service to a client population.

> Attacker Clients alerts Gateway

> > Defender

Learning Intrusion Prevention Policies

We use PPO to learn a policy $\pi_{\theta} : \mathcal{H} \mapsto \mathcal{A}$, where π_{θ} is a feed-forward neural network and \mathcal{H} is the set of histories.

POMDP Model of the Intrusion Prevention Use Case

We formulate the use case as a **multiple stopping problem** where each stop is associated with a defensive action. We use the following POMDP model:

- **States** S and Observations O: intrusion state $i_t \in \{0, 1\}$, $i_t = 1$, defender observations $o_t = (\Delta x_t, \Delta y_t, \Delta z_t)$ (IDS alerts and logins).
- **Actions** \mathcal{A} : "stop" (S) and "continue" (C)
- **Fransition Probabilities** $\mathcal{P}_{ss'}^{a}$ and Observation Function $\mathcal{Z}(o', s', a)$: Intrusion start $(Q_t)_{t=1}^T \sim Ber(p)$. Observation distribution $f_{XYZ}(\Delta x, \Delta y, \Delta z | s_t, I_t, t)$.
- **Reward Function** \mathcal{R}_s^a : Reward for service and intrusion prevention, loss for false alarms and intrusions.

 $---\pi_{\theta}$ emulation --- upper bound --- ($\Delta x + \Delta y$) ≥ 1 baseline

Threshold Properties of an Optimal Policy

Theorem 1. Let \mathscr{S}' be the stopping set, and \mathscr{C}' the continuation set. The following holds: (A) $\mathscr{S}^{l-1} \subseteq \mathscr{S}^{l}$ for $l = 2, \ldots L$. (B) If $L - I^A = 1$, there exists $\alpha^* \in [0, 1]$ and an optimal policy π_I^* that satisfies: $\pi^*_I(b(1)) = S \iff b(1) \ge lpha^*$ (1)

Early stopping times

affect the intrusion

References

- Kim Hammar and Rolf Stadler 2021 Intrusion Prevention through **Optimal Stopping**. Submitted for publication: https://arxiv.org/abs/2111.00289.
- Kim Hammar and Rolf Stadler 2021 Learning Intrusion Prevention **Policies through Optimal Stopping.** CNSM 2021. https://ieeexplore.ieee.org/document/9615542
- Kim Hammar and Rolf Stadler 2020 Finding Effective Security Strategies through Reinforcement Learning and Self-Play. CNSM 2020. https://ieeexplore.ieee.org/document/9269092

(C) If $L - I^A \ge 1$ and $f_{XYZ|s}$ is totally positive of order 2 (i.e., TP2), there exist $L - I^A$ values $\alpha^*_{I^A+1} \ge \alpha^*_{I^A+2} \ge \ldots \ge \alpha^*_L \in [0, 1]$ and an optimal policy π^*_I that satisfies:

$$\pi_I^*(b(1)) = S \iff b(1) \ge \alpha_I^*, I \in I^A + 1, \dots, L$$
(2)

Figure: Illustration of Theorem 1: there exist $L - I^A$ thresholds $\alpha^*_{I^A+1} \ge \alpha^*_{I^A+2} \dots, \ge \alpha^*_L \in \mathcal{B}$ and an optimal threshold policy π_I^* .