Intrusion Prevention through Optimal Stopping

Digital Futures Machine Learning Day, 17 January 2022

Kim Hammar (kimham@kth.se) Rolf Stadler (stadler@kth.se)
KTH Royal Institute of Technology, EECS, Division of Network and Systems Engineering

Motivation

- Problem: Cyber attacks evolve quickly. As a consequence, a defender must constantly adapt and improve the target system to remain effective.

- Approach

We formulate intrusion prevention as a multiple stopping problem and use reinforcement learning to automatically find optimal policies.

- Contributions

1. A novel formulation of the use case as a multiple stopping problem
2. A reinforcement learning approach to obtain policies in an emulated infrastructure.

Use Case: Intrusion Prevention

A defender takes measures to protect an IT infrastructure against an attacker while, at the same time, providing a service to a client population.

POMDP Model of the Intrusion Prevention Use Case

We formulate the use case as a multiple stopping problem where each stop is associated with a defensive action. We use the following POMDP model:

- States \mathcal{S} and Observations \mathcal{O} :
intrusion state $i_{t} \in\{0,1\}, i_{t}=1$,
defender observations $o_{t}=\left(\Delta x_{t}, \Delta y_{t}, \Delta z_{t}\right)$ (IDS alerts and logins).
- Actions \mathcal{A} : "stop" (S) and "continue" (C)
- Transition Probabilities $\mathcal{P}_{s s^{\prime}}^{a}$ and Observation Function $\mathcal{Z}\left(o^{\prime}, s^{\prime}, a\right)$: Intrusion start $\left(Q_{t}\right)_{t=1}^{T} \sim \operatorname{Ber}(p)$.
Observation distribution $f_{X Y Z}\left(\Delta x, \Delta y, \Delta z \mid s_{t}, l_{t}, t\right)$.
- Reward Function \mathcal{R}_{s}^{a} : Reward for service and intrusion prevention, loss for false alarms and intrusions.

References

- Kim Hammar and Rolf Stadler 2021 Intrusion Prevention through Optimal Stopping. Submitted for publication:
https://arxiv.org/abs/2111.00289.
- Kim Hammar and Rolf Stadler 2021 Learning Intrusion Prevention Policies through Optimal Stopping. CNSM 2021.
https://ieeexplore.ieee.org/document/9615542
- Kim Hammar and Rolf Stadler 2020 Finding Effective Security Strategies through Reinforcement Learning and Self-Play. CNSM 2020. https://ieeexplore.ieee.org/document/9269092

Our Approach

- The emulation system replicates key components of the target infrastructure and is used for data collection and policy evaluation.
- The simulation system is used to execute POMDP episodes and learn policies through reinforcement learning.

Learning Intrusion Prevention Policies

We use PPO to learn a policy $\pi_{\theta}: \mathcal{H} \mapsto \mathcal{A}$, where π_{θ} is a feed-forward neural network and \mathcal{H} is the set of histories.

Threshold Properties of an Optimal Policy

Theorem 1. Let \mathscr{S}^{\prime} be the stopping set, and \mathscr{C}^{\prime} the continuation set. The following holds:
(A) $\mathscr{S}^{I-1} \subseteq \mathscr{S}^{\prime}$ for $I=2, \ldots L$
(B) If $L-l^{A}=1$, there exists $\alpha^{*} \in[0,1]$ and an optimal policy π_{l}^{*} that satisfies:

$$
\begin{equation*}
\pi_{L}^{*}(b(1))=S \Longleftrightarrow b(1) \geq \alpha^{*} \tag{1}
\end{equation*}
$$

(C) If $L-I^{A} \geq 1$ and $f_{X Y Z \mid s}$ is totally positive of order 2 (i.e., TP2), there exist $L-I^{A}$ values $\alpha_{A_{+1}}^{*} \geq \alpha_{I_{+}+2}^{*} \geq \ldots \geq \alpha_{L}^{*} \in[0,1]$ and an optimal policy π_{l}^{*} that satisfies:

$$
\begin{equation*}
\pi_{l}^{*}(b(1))=S \Longleftrightarrow b(1) \geq \alpha_{l}^{*}, I \in I^{A}+1, \ldots, L \tag{2}
\end{equation*}
$$

Figure: Illustration of Theorem 1: there exist $L-I^{A}$ thresholds $\alpha_{A_{+1}}^{*} \geq \alpha_{A_{+2}}^{*} \ldots, \geq \alpha_{L}^{*} \in \mathcal{B}$ and an optimal threshold policy π_{I}^{*}.

