

Learning Near-Optimal Intrusion Responses Against Dynamic Attackers

CDIS Spring Conference, 25 May 2023 Kim Hammar (kimham@kth.se) Rolf Stadler (stadler@kth.se)

KTH Royal Institute of Technology, Center for Cyber Defense and Information Security (CDIS)

Motivation and Contributions

Problem: Cyber attacks evolve quickly. As a consequence, a defender must constantly adapt and improve the target system to remain effective.

Contributions

- 1. A novel formulation of intrusion response as an optimal stopping game.
- 2. A method to obtain strategies with demonstrated performance in emulated infrastructures.
- 3. A reinforcement learning algorithm (T-FP) that outperforms state-of-the-art.

Our Approach

- The emulation system replicates key components of the target infrastructure and is used for data collection and strategy evaluation.
- The simulation system is used to simulate game episodes and learn strategies through reinforcement learning.

Use Case: Intrusion Response

A defender takes measures to protect an IT infrastructure against an attacker while providing services to a client population.

Attacker Clients

Learning Optimal (Equilibrium) Strategies with T-FP

Partially Observed Stochastic Stopping Game

We formulate the use case as a **Partially Observed Stochastic stopping Game (POSG)**. Each stop action of the defender correspond to a measure against a possible intrusion. The attackers' stop actions determine when the intrusion starts and stops.

Probability distribution of # IPS alerts weighted by priority o_t

Threshold Properties of Best Response Strategies

 \longrightarrow T-FP \longrightarrow NFSP \longrightarrow HSVI

Theorem 1. Given the POSG Γ with one-sided partial observability and $L \ge 1$ stop actions for the defender, the following holds.

- (A) Γ has a mixed Nash equilibrium. If $s = 0 \iff b(1) = 0$, then it has a pure Nash equilibrium.
- (B) If f_{O|s} is totally positive of order 2, there exist L values α₁ ≥ α₂ ≥ ... ≥ α_L ∈ [0, 1] and a best response multi-threshold defender strategy π_D.
 (C) If the π_D is non-decreasing in b(1), then there exist values β_{0,1}, β_{1,1}, ..., β_{0,L}, β_{1,L} ∈ [0, 1] and a best response multi-threshold attacker strategy π_A.

Video of Software Framework

References

- Kim Hammar and Rolf Stadler 2023 Learning Near-Optimal Intrusion Responses Against Dynamic Attackers. To appear in IEEE TNSM. https://arxiv.org/abs/2301.06085.
- Kim Hammar and Rolf Stadler 2022 Intrusion Prevention through Optimal Stopping. IEEE TNSM.
 https://ieeevplore.ieee.org/document/9779345

https://ieeexplore.ieee.org/document/9779345.